Niveau:2
Introduction:
Dans ce chapitre, nous allons voir comment lire les données du module TS-WS-07-XF avec un Arduino.
Descriptif du matériel:
Module TS-WS-07-XF:
Fréquence : 433,92MHz
Alimentation : 2 piles 1.5V
Mesure la température et l’hygrométrie.
Documentation :TS-WS-07.pdf
Récepteur RF :
Il existe plusieurs modèles de module RF avec des prix très variable suivant la qualité du module.
Voici le modèle très bas prix qui fonctionne mais à une réception limitée en distance.
J’utilise pour mon montage le modèle AM-RX9-433P.
Documentation:AM-RX9-433P.pdf
Raccordement:
Vérifier que les broches sont bien identique pour votre module.
Récepteur:
VCC =>+5 Volt de la carte Arduino
GND=>GND de la carte Arduino.
DATA => broche 2 ou 3 de la carte Arduino.
Programme:
/* Based on Andrew's sketch for capturing data from Ambient F007th Thermo-Hygrometer less the uploading it to Xively via Wifi and with the addition of a checksum check. Inspired by the many weather station hackers who have gone before, Only possible thanks to the invaluable help and support on the Arduino forums. With particular thanks to Rob Ward (whose Manchester Encoding reading by delay rather than interrupt is the basis of this code) https://github.com/robwlakes/ArduinoWeatherOS The work of 3zero8 capturing and analysing the F007th data http://forum.arduino.cc/index.php?topic=214436.0 The work of Volgy capturing and analysing the F007th data https://github.com/volgy/gr-ambient Marco Schwartz for showing how to send sensor data to websites http://www.openhomeautomation.net/ The forum contributions of; dc42: showing how to create 5 minute samples. jremington: suggesting how to construct error checking using averages (although not used this is where the idea of using newtemp and newhum for error checking originated) Krodal: for his 6 lines of code in the forum thread "Compare two sensor values" This example code is in the public domain. Additional work by Ron Lewis on reverse engineering the checksum What this code does: Captures Ambient F007th Thermo-Hygrometer data packets by; Identifying a header of at least 10 rising edges (manchester encoding binary 1s) Synchs the data correctly within byte boundaries Distinguishes between F007th data packets and other 434Mhz signals with equivalent header by checking value of sensor ID byte Correctly identifies positive and negative temperature values to 1 decimal place for up to 8 channels Correctly identifies humidity values for up to 8 channels Error checks data by rejecting; humidity value outside the range 1 to 100% bad checksums Hardware to use with this code 6 F007th Thermo-Hygrometer set to different channels (can be adapted for between 1 and 8) A 434Mhz receiver 17cm strand of CAT-5 cable as an antenna. Code optimisation In order to improve reliability this code has been optimised to remove float values except when sending to Xively. This code does not provide any output to the serial monitor on what is happening, see earlier versions for printouts. F007th Ambient Thermo-Hygrometer Sample Data: 0 1 2 3 4 5 6 7 FD 45 4F 04 4B 0B 52 0 0 1 2 3 4 5 6 7 8 9 A B C D E 11111101 01000101 01001111 00000100 01001011 00001011 01010010 0000 hhhhhhhh SSSSSSSS NRRRRRRR bCCCTTTT TTTTTTTT HHHHHHHH CCCCCCCC ???? Channel 1 F007th sensor displaying 21.1 Centigrade and 11% RH hhhhhhhh = header with final 01 before data packet starts (note using this sketch the header 01 is omitted when the binary is displayed) SSSSSSSS = sensor ID, F007th = Ox45 NRRRRRRR = Rolling Code Byte? Resets each time the battery is changed b = battery indicator? CCC = Channel identifier, channels 1 to 8 can be selected on the F007th unit using dipswitches. Channel 1 => 000, Channel 2 => 001, Channel 3 => 010 etc. TTTT TTTTTTTT = 12 bit temperature data. To obtain F: convert binary to decimal, take away 400 and divide by 10 e.g. (using example above) 010001001011 => 1099 (1099-400)/10= 69.9F To obtain C: convert binary to decimal, take away 720 and multiply by 0.0556 e.g. 0.0556*(1099-720)= 21.1C HHHHHHHH = 8 bit humidity in binary. e.g. (using example above) 00001011 => 11 CCCCCCCC = checksum? Note that this sketch only looks at the first 6 bytes and ignores the checksum */ /* Christophe Caron www.caron.ws V1.0.0 24/03/2019 */ #define MAX_BYTES 7 #define countof(x) (sizeof(x)/sizeof(x[0])) // Interface Definitions int RxPin = 2; //The number of signal from the Rx // Variables for Manchester Receiver Logic: word sDelay = 242; //Small Delay about 1/4 of bit duration word lDelay = 484; //Long Delay about 1/2 of bit duration, 1/4 + 1/2 = 3/4 byte polarity = 1; //0 for lo->hi==1 or 1 for hi->lo==1 for Polarity, sets tempBit at start byte tempBit = 1; //Reflects the required transition polarity boolean firstZero = false;//flags when the first '0' is found. boolean noErrors = true; //flags if signal does not follow Manchester conventions //variables for Header detection byte headerBits = 10; //The number of ones expected to make a valid header byte headerHits = 0; //Counts the number of "1"s to determine a header //Variables for Byte storage boolean sync0In = true; //Expecting sync0 to be inside byte boundaries, set to false for sync0 outside bytes byte dataByte = 0xFF; //Accumulates the bit information byte nosBits = 6; //Counts to 8 bits within a dataByte byte maxBytes = MAX_BYTES; //Set the bytes collected after each header. NB if set too high, any end noise will cause an error byte nosBytes = 0; //Counter stays within 0 -> maxBytes //Variables for multiple packets byte bank = 0; //Points to the array of 0 to 3 banks of results from up to 4 last data downloads byte nosRepeats = 3; //Number of times the header/data is fetched at least once or up to 4 times //Banks for multiple packets if required (at least one will be needed) byte manchester[MAX_BYTES]; //Stores banks of manchester pattern decoded on the fly // Variables to prepare recorded values for Ambient byte stnId = 0; //Identifies the channel number int dataType = 0; //Identifies the Ambient Thermo-Hygrometer code int Newtemp = 0; int Newhum = 0; int ChanTemp[9]; //make one extra so we can index 1 relative int ChanHum[9]; void setup() { Serial.begin(115200); pinMode(RxPin, INPUT); eraseManchester(); //clear the array to different nos cause if all zeroes it might think that is a valid 3 packets ie all equal } // Main RF, to find header, then sync in with it and get a packet. void loop() { lecture(); } //end of mainloop void lecture() { tempBit = polarity; //these begin the same for a packet noErrors = true; firstZero = false; headerHits = 0; nosBits = 6; nosBytes = 0; while (noErrors && (nosBytes < maxBytes)) { while (digitalRead(RxPin) != tempBit) { //pause here until a transition is found }//at Data transition, half way through bit pattern, this should be where RxPin==tempBit delayMicroseconds(sDelay);//skip ahead to 3/4 of the bit pattern // 3/4 the way through, if RxPin has changed it is definitely an error if (digitalRead(RxPin) != tempBit) { noErrors = false; //something has gone wrong, polarity has changed too early, ie always an error }//exit and retry else { delayMicroseconds(lDelay); //now 1 quarter into the next bit pattern, if (digitalRead(RxPin) == tempBit) //if RxPin has not swapped, then bitWaveform is swapping { //If the header is done, then it means data change is occuring ie 1->0, or 0->1 //data transition detection must swap, so it loops for the opposite transitions tempBit = tempBit ^ 1; }//end of detecting no transition at end of bit waveform, ie end of previous bit waveform same as start of next bitwaveform //Now process the tempBit state and make data definite 0 or 1's, allow possibility of Pos or Neg Polarity byte bitState = tempBit ^ polarity;//if polarity=1, invert the tempBit or if polarity=0, leave it alone. if (bitState == 1) //1 data could be header or packet { if (!firstZero) { headerHits++; } else { add(bitState);//already seen first zero so add bit in } }//end of dealing with ones else { //bitState==0 could first error, first zero or packet // if it is header there must be no "zeroes" or errors if (headerHits < headerBits) { //Still in header checking phase, more header hits required noErrors = false; //landing here means header is corrupted, so it is probably an error }//end of detecting a "zero" inside a header else { //we have our header, chewed up any excess and here is a zero if (!firstZero) //if first zero, it has not been found previously { firstZero = true; add(bitState);//Add first zero to bytes //Serial.print("!"); }//end of finding first zero else { add(bitState); }//end of adding a zero bit }//end of dealing with a first zero }//end of dealing with zero's (in header, first or later zeroes) }//end of first error check }//end of while noErrors=true and getting packet of bytes } //Read the binary data from the bank and apply conversions where necessary to scale and format data void add(byte bitData) { dataByte = (dataByte << 1) | bitData; nosBits++; if (nosBits == 8) { nosBits = 0; manchester[nosBytes] = dataByte; nosBytes++; } if (nosBytes == maxBytes) { dataByte = 0xFF; // Subroutines to extract data from Manchester encoding and error checking // Identify channels 1 to 8 by looking at 3 bits in byte 3 int stnId = ((manchester[3] & B01110000) / 16) + 1; // Identify sensor by looking for sensorID in byte 1 (F007th Ambient Thermo-Hygrometer = 0x45) dataType = manchester[1]; // Gets raw temperature from bytes 3 and 4 (note this is neither C or F but a value from the sensor) Newtemp = (float((manchester[3] & B00000111) * 256) + manchester[4]); // Gets humidity data from byte 5 Newhum = (manchester [5]); if ( Checksum (countof(manchester) - 2, manchester + 1) == manchester[MAX_BYTES - 1]) { // Checks sensor is a F007th with a valid humidity reading equal or less than 100 if ((dataType == 0x45) && (Newhum <= 100)) { ChanTemp[stnId] = Newtemp; ChanHum[stnId] = Newhum; // print raw data char Buff[128]; char str_Tvalue[6]; float Tvalue=((float((Newtemp - 720) * 0.0556))); dtostrf(Tvalue, 4, 2, str_Tvalue); for (int i = 0; i < maxBytes; i++) { sprintf(&Buff[i * 3], "%02X ", manchester[i]); } // 123456789 123456789 1234 // Channel=1 F=123.1 H=12%< sprintf(&Buff[maxBytes * 3], " Canal: %d Température: %s °C Hygrométrie:%d%%\n", stnId, str_Tvalue, Newhum); Serial.print(Buff); Serial.print("Canal:"); Serial.println(stnId); Serial.print("Température:"); Serial.print(Tvalue,2); Serial.println(" °C"); Serial.print("Hygrométrie:"); Serial.print(Newhum); Serial.println(" %"); } } } } void eraseManchester() { for ( int j = 0; j < 4; j++) { manchester[j] = j; } } uint8_t Checksum(int length, uint8_t *buff) { uint8_t mask = 0x7C; uint8_t checksum = 0x64; uint8_t data; int byteCnt; for ( byteCnt = 0; byteCnt < length; byteCnt++) { int bitCnt; data = buff[byteCnt]; for ( bitCnt = 7; bitCnt >= 0 ; bitCnt-- ) { uint8_t bit; // Rotate mask right bit = mask & 1; mask = (mask >> 1 ) | (mask << 7); if ( bit ) { mask ^= 0x18; } // XOR mask into checksum if data bit is 1 if ( data & 0x80 ) { checksum ^= mask; } data <<= 1; } } return checksum; }
Code source: RF_Temp.zip