

ESSENTIALS

CONQUER

TH
E COMMAND

LINE
The Raspberry Pi

TERMINAL GUIDE
Written by Richard Smedley

UPDATED FOR 2019!

+ 4 N
EW CHAPTERS

2nd
EDITION

AVAILABLE NOW:

LEARN | CODE | MAKE

ESSENTIALS

From the makers of the
official Raspberry Pi magazine

ESSENTIALS

> CONQUER THE COMMAND LINE

> EXPERIMENT WITH SENSE HAT

> MAKE GAMES WITH PYTHON

> CODE MUSIC WITH SONIC PI

> LEARN TO CODE WITH SCRATCH

> HACK & MAKE IN MINECRAFT

> ELECTRONICS WITH GPIO ZERO

> LEARN TO CODE WITH C

> THE CAMERA MODULE GUIDE

> AIY PROJECTS

OUT NOW
ONLY £3.99
store.rpipress.cc

GET THEM
DIGITALLY:

IN PRINT

https://itunes.apple.com/gb/app/the-magpi-the-official-raspberry-pi-magazine/id972033560?mt=8
http://store.rpipress.cc
https://play.google.com/store/apps/details?id=com.raspberry.magpi&hl=en_GB

ometimes only words will do. Graphic user
interfaces (GUIs) were a great advance,
creating an easy route into computer use

for many non-technical users. For complex tasks,
though, the interface can become a limitation:
blocking off choices, and leaving a circuitous route
even for only moderately complicated jobs.

(Re-)Enter the command line: the blinking cursor
that many thought had faded away in the 1990s. For
getting instructions from user to computer – in a
clear, quick, and unambiguous form – the command
line is often the best way. It never disappeared on
UNIX systems, and now, thanks to Raspbian on the
Raspberry Pi, a new generation is discovering the
power of the command line to simplify complex
tasks, or instantly carry out simple ones.

If you’re not comfortable when faced with the $
prompt, then don’t panic! In this fully updated book,
we’ll quickly make you feel at home, and able to
find your way around the terminal on the Pi, or any
other GNU/Linux computer: getting things done, and
unlocking the power of the command line.

WELCOME TO
CONQUER THE
COMMAND LINE

S

4 [Chapter One]

This book is published by Raspberry Pi (Trading) Ltd., Maurice Wilkes Building, St. John's Innovation Park,
Cowley Road, Cambridge, CB4 0DS. The publisher, editor and contributors accept no responsibility in respect
of any omissions or errors relating to goods, products or services referred to or advertised in this product.
Except where otherwise noted, content in this book is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0). ISBN: 978-1-912047-66-6

GET IN TOUCH magpi@raspberrypi.orgFIND US ONLINE raspberrypi.org/magpi

In print, this product is made using paper
sourced from sustainable forests and
the printer operates an environmental
management system which has been
assessed as conforming to ISO 14001.

EDITORIAL
Editor: Phil King
Writer: Richard Smedley
Contributors: Lucy Hattersley,
Simon Long

DESIGN
Critical Media: criticalmedia.co.uk
Head of Design: Lee Allen
Designer: Mike Kay

PUBLISHING
Publishing Director: Russell Barnes
Director of Communications: Liz Upton
CEO: Eben Upton

mailto:magpi%40raspberrypi.org?subject=
http://www.raspberrypi.org/magpi
https://itunes.apple.com/gb/app/the-magpi-the-official-raspberry-pi-magazine/id972033560?mt=8
https://play.google.com/store/apps/details?id=com.raspberry.magpi&hl=en_GB
http://www.criticalmedia.co.uk

5

 [CONQUER THE COMMAND LINE]

[Don’t Panic] 5[Contents]

CONTENTS

ESSENTIALS

06 [CHAPTER ONE]
DON’T PANIC
Take a look around
and discover things

11 [CHAPTER TWO]
READ/WRITE TEXT
Get working on files

16 [CHAPTER THREE]
PERMISSION TO INSTALL
Raspbian’s system for installing

and updating

21 [CHAPTER FOUR]
MANIPULATING TEXT
Connect together multiple
simple commands

26 [CHAPTER FIVE]
CUSTOMISE
THE COMMAND LINE
Make Raspbian more personal

[RICHARD
SMEDLEY]

Since soldering
together his first
computer – a ZX81
kit – and gaining
an amateur
radio licence as
GW6PCB, Richard
has fallen in
and out of love
with technology.
Swapping the
ZX81 for a guitar,
and dropping ham
radio for organic
horticulture,
he eventually
returned to the
command line,
beginning with a
computer to run
his own business,
and progressing
to running all the
computers of
an international
sustainability
institution. Now
he writes about
Free Software and
teaches edible
landscaping.

31 [CHAPTER SIX]
CONNECTING DISKS
Tackle the management
of removable storage

36 [CHAPTER SEVEN]
PREDICTABLE NETWORKING
Give the Pi a permanent network
address of its own

41 [CHAPTER EIGHT]
STOPPING A PROCESS
No need to turn it off and on again:
just kill the process!

46 [CHAPTER NINE]
REMOTE PI
Access the Pi with Secure Shell

51 [CHAPTER TEN]
DOWNLOADING & INSTALLING
Add software and write to SD cards

56 [CHAPTER ELEVEN]
START AND STOP AT
YOUR COMMAND
Manage startup and shutdown

64 [CHAPTER TWELVE]
SAVE IT NOW!
Protect your data with backups

74 [CHAPTER THIRTEEN]
EASY COMPILATION
Build software from source code

82 [CHAPTER FOURTEEN]
COMMANDING THE INTERNET
Get online from the command line

6

ESSENTIALS

[CHAPTER ONE]

DON’T PANIC
In the first chapter, we take a look around and discover
that things aren’t as strange as they might appear…

ESSENTIALS

6 [Chapter One]

7

 [CONQUER THE COMMAND LINE]

7

Commands are
terse, but, once
learned, they’re
a quick way of
navigating and
reading your files
and folders

The command
line is only a click
away: it is called
Terminal and you
can find it under
Accessories in
the menu

[READ THE
MANUAL]
Help is included,
with man(ual)
pages, but they
can be a little
overwhelming.
Use them to
check out some
extra options
beyond the
switches like
-a we use here.
To read the ls
man page, type
man ls.

t’s not a throwback to the past, but a quick and powerful way
of getting your Raspberry Pi to do what you want, without
all that RSI-inducing menu chasing and icon clicking. The

command-line interface was a great step up from manually toggling
in your instructions in octal (base-8), using switches on the front of
the machine! Graphical user interfaces (GUIs) brought friendly visual
metaphor to the computer, losing some power and expressiveness.
With the Raspberry Pi, you can get the best of both worlds by knowing
both: after reading through this guide, you’ll soon be as comfortable
at the command prompt as you are at your desktop.

Unlike some earlier versions of Raspbian, Stretch boots you straight
to a GUI, although you can change this behaviour in the settings. The
command-line environment is still there: hold down the ALT+CTRL
keys and press F1 (the first function key on the keyboard), and you’ll
arrive at a ‘virtual console’. Press ALT+F2 through to F6 and you’ll
find five further consoles waiting for you to log in.

You can drop into these any time you like, but for now press
ALT+F7 and you’ll be back in mouse and menu land. The command
line is also available through a program called a terminal emulator
(often referred to as a term or xterm). You’ll also find people referring
to the shell, or Bash. Don’t worry about that for now; just click on the
icon at the top of the screen that looks like a black television screen,

I

[Don’t Panic]

8

ESSENTIALSESSENTIALS

8

or go to Accessories>Terminal in the menu: the terminal now awaits
your commands.

Look around
If you’re used to looking at files and folders in a file manager, try
to clear your mind of the icons and concentrate on the names. Type
ls and press RETURN (see ‘Press Return’ box). On a fresh Raspbian
Stretch with Recommended Software install, you’ll just see a few
directories, including MagPi. Type ls MagPi (see ‘Lazy Completion’
box) and you’ll see a listing of what’s in it.

Commands like ls are not cryptic (at least not intentionally) but they
are terse, dating back to a time when the connection to the computer
was over a 110 baud serial line, from an ASR 33 teletype terminal. If
you think it’s strange to be defined by 50-year-old technology, just
remember that your QWERTY keyboard layout was reputedly designed
both to stop mechanical typewriter keys jamming, and to enable
salespeople to quickly type ‘typewriter’ using the top row!

File path
You can list files and folders anywhere in your system (or other
connected systems) by providing the path as an argument to your

Fig 1 Switches
modify behaviour
in commands; ls
-a shows (dot) files
in your listing that
are usually hidden
from view

To save
repeating it in the
text, we’ll confirm
here that each
time you type
in a command,
you need to hit
the RETURN or
ENTER key at the
end, to tell the
Pi you’ve issued
Bash with a
command.

[PRESS
RETURN]

[Chapter One]

9

 [CONQUER THE COMMAND LINE]

command. The path is the folder hierarchy: on a Windows computer,
in a graphical file browser, it starts with ‘My Computer’; on your Pi it
starts at /, pronounced ‘root’ when used on its own as the root of your
file system. Try entering ls / – again we get terseness, and names
like ‘bin’, which is short for binary, and is the directory where many
programs are kept (enter ls /bin to see the details). ls /dev shows
hardware devices in the Pi. Try ls /home – see that ‘pi’? That’s you:
you are logged in as user pi. If you’ve changed your login name, or if
you have created extra users, they’ll all be listed there too: every user
gets their own home directory; yours is the /home/pi folder in which
we found ourselves in earlier. Before, with MagPi, we used the relative
path (the absolute path would be /home/pi/MagPi) because we’re
already home. If you need to check your location, type pwd (present
working directory).

There’s no place like ~
For any logged-in user, their home directory is abbreviated as ~ (the
tilde character). Type ls ~ and you’ll see. There’s apparently not much
in your home directory yet, but Raspbian keeps a lot hidden from the
casual glance: files and folders beginning with a dot, known as ‘dot files’,
contain configuration information for your system and its programs.
You don’t need to see these files normally, but when you do, just ask ls
to show you all files with a command switch. You can do this with either
the full switch --all, or the abbreviation -a like so: ls -a ~. Traversing
the pathways of the directory hierarchy can be easier from the command
line than clicking up and down a directory tree, particularly with all
the shortcuts given. Your ls -a showed you . and .. as the first two
directories; these shortcuts represent the current and the parent directory
respectively. Try listing the parent directory – from /home/pi, entering
ls ../../ will show you two layers up. If you want to list the hidden
files without the . and .. appearing (after all, they’re present in every
directory, so you don’t need to be told), then the switch to use is -A.

Commands are not cryptic (at least
not intentionally), but they are terse

[LAZY
COMPLETION]
You don’t need
to type all of
ls MagPi (for
example) – after
ls M, hit the TAB
key and it will
auto-complete.
If you’ve more
than one file
beginning with
M, they’ll all be
listed and you
can type more
letters and hit
TAB again.

[Don’t Panic]

 [CONQUER THE COMMAND LINE]

10

ESSENTIALS

[Chapter One]10 [Chapter One]

Before we move on to other commands, let’s look briefly at chaining
switches together: ls -lh ~
 -l gives you more information about the files and folders, and -h

changes the units from bytes to kB, MB, or GB as appropriate. We’ll
look at some of the extras the -l listing shows you in more detail later,
particularly in chapters two and three.

Time for change
That’s enough looking: let’s start moving. cd is short for change
directory, and moves you to anywhere you want in the file system:
try cd /var/log and have a look (ls, remember). Files here are logs,
or messages on the state of your system that are saved for analysis
later. It’s not something you’ll often need to think about: Raspbian
is a version of an operating system that also runs across data centres
and supercomputers, where problem monitoring is very important.
It is, however, useful to know, particularly if you have a problem and
someone on a forum advises you to check your logs.
cd ~ will take you where you expect it. Try it, then pwd to check.

Now try cd - (that’s a hyphen), the ‘-’ is a shortcut for ‘wherever I
was before I came here’. Now we’ve looked around, we can move on to
beginning to do things to our files.

Right Who needs
icons when you
can fit a listing

of 78 files into a
small window?
Coloured fonts

indicate file types

ESSENTIALS

11[Don’t Panic] 11[Read/Write Text]

[CHAPTER TWO]

READ/WRITE
TEXT
In this chapter, we get working on files

ESSENTIALS

12

ESSENTIALS

[Chapter Two]

ow that we can navigate folders and list files, it’s time to learn
how to create, view, and alter both files and folders. Once
more, it’s not that the task is difficult, rather that the forms

of the commands (particularly when editing) are unfamiliar, coming
from an era before Common User Access (CUA) standards were created
to ease switching between applications and operating systems.

Stick with it: with just the first two chapters of this book under your
belt, you’ll be able to do plenty of work at the command line, and start
getting comfortable there.

Creating a directory
We’re going to dive straight into working with files and folders by
creating a new directory. Assuming you already have a terminal open
(see ‘Instant applications’ box), and you’re in your home directory
(pwd to check, cd ~ to get back there if necessary), type mkdir
tempfolder and have a look with ls.
mkdir, as you’ve probably guessed, creates a new directory or folder.

Let’s use it to experiment with altering one of the included Python
games. Don’t worry: we’re not going to be programming Python, just
making a small change by way of illustration. cd tempfolder (use
tab completion: cd t then hit the TAB key). In the following example,
we’ll be copying some files to this directory.

N
Many utilities
have info pages,
giving far more
information
than their man
page. If you’re
feeling brave, try
info nano for a
comprehensive
guide to nano.

[MORE
INFO]

Create and name
files and directories
with keystrokes,
rather than
mouse-clicks and
keystrokes

The command line
offers tools to get
text from different
parts of a file, like
skipping to the
conclusion

13

 [CONQUER THE COMMAND LINE]

First, make sure Python Games is installed – if not, click the
top-left Raspberry Pi icon on the desktop, select Preferences,
then Recommended Software, tick the box next to Python
Games in the list, and then click Apply to install it.

We’ll copy over the files from the python_games directory:

cp /usr/share/python_games/fourinarow.py .
cp /usr/share/python_games/4row_* .

Wildcard
The . (dot) at the end of the commands refers to ‘just here’, which
is where we want the files copied. Also, 4row_* is read by the Pi as
‘every file beginning 4row_’ – the * is known as a wildcard, and this
one represents any number of characters (including none); there are
other wildcards, including ?, which means any single character.

Try python fourinarow.py and you’ll see you can run the
local copy of the game. To change the game, we need an editor –
sidestepping the UNIX debate about which one is best, we’ll use the
Pi’s built-in editor: nano. Unless you’ve previously used the Pico

editor, which accompanied the Pine email client on many university
terminals in the 1980s and 1990s, it will seem a little odd (Fig 1,
overleaf). That’s because its conventions predate the CTRL+C for copy
type standards found in most modern programs. Bear with us.

Editing and paging
nano fourinarow.py will open the game for editing; use the arrow
keys to go down nine lines, and along to the BOARDHEIGHT value of
6. Change it to 10 (both the BACKSPACE and DELETE keys will work
in nano). The last two lines of the screen show some shortcuts, with

We’re going to dive straight into
working with files and folders
by creating a new directory

 [CONQUER THE COMMAND LINE]

[Read/Write Text]

Although you
can open
the terminal
emulator from
the menu –
Accessories >
Terminal – for
this, and any
other app, just
hit ALT+F2
and type its
command name:
lxterminal.

[INSTANT
APPLICATIONS]

14

ESSENTIALS

^ (the caret symbol) representing the CTRL key: CTRL+O, followed
by RETURN will ‘write out’ (save) the file; then use CTRL+X to exit.
Now, python fourinarow.py will open an oversize board, giving
you more time to beat the computer, should you need it. However,
there’s now no room to drag the token over the top of the board:
go back and change the BOARDHEIGHT value to 9, with nano.

If you want to take a look through the fourinarow.py listing
without entering the strange environment of nano, you can see
the entire text of any file using cat: e.g., cat fourinarow.py.
Unfortunately, a big file quickly scrolls off the screen; to look through
a page at a time, you need a ‘pager’ program. less fourinarow.py
will let you scroll up and down through the text with the PAGE UP and
PAGE DOWN keys. Other keys will do the same job, but we’ll leave
you to discover these yourself. To exit less, hit Q (this also works
from man and info pages, which use a pager to display text).

Cats, heads & tails
If editor wars are a UNIX tradition we can safely ignore, there’s
no getting away from another tradition: bad puns. less is an
improvement over more, a simple pager; the respective man pages
will show you the differences. One advantage the relatively primitive
more has is that at the end of a file it exits automatically, saving you
reaching for the Q button. Admittedly, this is not a huge advantage,
and you can always use cat.

Fortunately, cat is not a feline-based pun, but simply short for
‘concatenate’: use it with more
than one file and it concatenates
them together. Used with
no argument – type cat – it
echoes back what you type
after each ENTER. Hit CTRL+C
to get out of this when you’ve
finished typing in silly words
to try it. And remember that
CTRL+C shortcut: it closes most
command-line programs, in the
same way that ALT+F4 closes
most windowed programs.

Fig 1 The default
editor, nano, has

unusual command
shortcuts, but
they’re worth

learning, as you’ll
find nano installed

on virtually all Linux
boxes, such as your

web host

[Chapter Two]

You don’t need
to wade through
the man page
to see what
switches are
available: type
--help after
the command
to be shown
your options, e.g.
rm --help

[SWITCHING
HELP]

15

 [CONQUER THE COMMAND LINE]

You can peek at the first or
last few lines of a text file with
head and tail commands. head
fourinarow.py will show you
the first ten lines of the file.
head -n 5 fourinarow.py
shows just five lines, as does
tail -n 5 fourinarow.py
with the last five lines. On the Pi,
head -5 fourinarow.py will
also work.

Remove with care
nano afile.txt will create a
new file if afile.txt does not already exist: try it, and see if it works
when you exit the file before writing and saving anything. We’ve
done a lot already (at least, nano makes it feel like a lot), but it’s
never too early to learn how to clean up after ourselves. We’ll
remove the files we’ve created with rm. The remove tool should
always be used with care: it has some built-in safeguards, but even
these are easy to override (Fig 2). In particular, never let anyone
persuade you to type rm -rf / – this will delete the entire
contents of your Pi, all the programs, everything, with little to no
chance of recovery.

Have a look at what files we have: if you’re still in the
tempfolder you made, then ls will show you the Four-in-a-Row
files you copied here. Remove the program, then the .png files
with careful use of the * wildcard.

rm fourinarow.py
rm 4row_*.png

cd .. to get back to /home/pi and rm -r tempfolder
will remove the now empty folder. The -r (recursive) option
is necessary for directories, and will also remove the contents
if any remain.

In the next chapter, we’ll delve into file permissions and updating
your Pi’s software from the command line.

Fig 2 rm is a
powerful removal
tool: use with
great care!

[Read/Write Text]

16 [Chapter Three]

[CHAPTER THREE]

PERMISSION
TO INSTALL

We look at Raspbian’s efficient system for installing
and updating software, among other things

ESSENTIALS

17

 [CONQUER THE COMMAND LINE]

[Permission to Install]

[SHARED
RESPONSIBILITY]

If you share
your Pi, read up
on sudo and
the visudo
command to
find how to
give limited but
useful admin
privileges to the
other users.

nstalling software should be easy, but behind every piece of
software is an evolving set of dependencies that also need
installing and updating. Keeping them separate reduces

unnecessary bloat and duplication, but adds the potential for bugs,
missing files, and even totally unresolvable clashes.

Fortunately, Debian GNU/Linux cracked the problem back in
the 1990s with the Debian Package Management system and the
Advanced Package Tool (APT) – and Debian-based systems, like
Ubuntu and the Pi’s Raspbian, inherit all of the benefits. Here we’ll
show you the basics you need to know to install new software and
keep your system up to date from the command line, and then look at
the not entirely unrelated field of file ownership and permissions.

Using the apt command to update your system’s list of installable
software should be as simple as issuing the command like so:
apt-get update. Try this logged in as user pi, though, and you’ll
just get error messages. The reason for this is that changing system
software on a GNU/Linux (or any type of UNIX) system is a task
restricted to those with administrative permissions: the godlike
superuser, or admin, also known as root.

I

Every file, folder,
and even hardware

component should have
just enough permission

for you to use it – but not
be over-accessible at

the risk of security

Raspbian’s software
repository contains many

thousands of freely
installable apps, just a

command away from use

18

ESSENTIALS

[Chapter Three]

Pseudo root, su do
We’ll get onto permissions properly a bit later, but for now you’ll be
pleased to know that you can fake it, using the sudo command. sudo
potentially offers a fine-grained choice of permissions for users and
groups to access portions of the admin user’s powers. However, on
the Pi, Raspbian assumes, quite rightly, that the default user will be
someone just wanting to get on with things, and sudo in front of a
command will pretty much let you do anything. You have been warned!

The following two commands will update Raspbian’s installed
software (Fig 1):

sudo apt-get update
sudo apt-get upgrade

You can wait for one to finish, check everything is OK, then issue the
other command, or you can save waiting and enter both together with:

sudo apt-get update && sudo apt-get upgrade

The && is a Boolean (logical) AND, so if the first command doesn’t
run properly, the second one will not run at all. This is because for a
logical AND to be true, both of its conditions must be true.

It’s always worth running the update command before installing
new software, too – minor updates are made even in stable
distributions such as Raspbian, to address any issues. We’ve just

Fig 1 Raspbian
updates its listing
of thousands of
available apps,
providing you give it
admin permissions

19[Permission to Install]

run an update, so no need to repeat that for now. Sticking with
a command-line theme, we’re going to install an old suite of
terminal games:

sudo apt-get install bsdgames

Searchable list
It is possible to find particular apps with apt-cache search:
apt-cache search games. You can also examine individual
packages with apt-cache show: apt-cache show bsdgames.

APT is actually a front end to the lower-level dpkg, which you can
call to see what you have installed on the system: dpkg -l. Even
on a fresh system, that’s a large listing: we’ll show you how to get
useful information from such listings another time.

Downloaded packages hang around in /var/cache/apt and if you
find yourself short on disk space, issuing sudo apt-get clean will
clear out the archive, without affecting the installed software.

Now, remember the extra details that ls -lh showed us in
chapter 1? Try ls -lh /etc/apt.

 That -rw-rw-r-- at the beginning of the listing for sources.list
comprises file attributes, telling you who may use the file. Other
entries in the listing have a d at the beginning, indicating they are
directories. You’ll also see hardware devices have a c here, for character
device – ls -l on /dev/input, for example. On Linux, everything is a
file, even your mouse! A dash (-) at the start tells us this is just a regular
file; it’s the remaining nine characters that cover permissions.

Every file has an owner and a group membership. Files in your home
directory belong to you. If you’re logged in as user pi and ls ~ -l, you’ll
see pi pi in each listing, telling you the owner and the group. Note that
we put the switch at the end this time: that’s a bad habit under certain
circumstances, but we’re just showing you what’s possible. Owner and
group aren’t always the same, as ls -l /dev will show you.

File attributes
The file attributes, after the file type, are three groups of three
characters (rwx) telling you which users may read, write or execute the
file or directory for, respectively, the user who owns the file, the group

[FREE TO USE]
Software in
the Raspbian
repository is
not just free to
use, but freely
modifiable and
redistributable.
Free software,
like Raspbian’s
Debian base, is
built on sharing:
for education
and for building
community.

 [CONQUER THE COMMAND LINE]

[Chapter Three]20

ESSENTIALS

owner, and everyone else (‘others’). Execute permissions are needed
to run a file if it’s a program – such as launcher.sh which runs the
Python games in your usr/share/python_games folder, and thus it has
the x – and for directories, so that you may cd into them.
cd into usr/share/python_games and then enter the command

sudo chmod a-x launcher.sh – the a stands for all (user, group and
others), use u, g, or o to just change one. Try opening Python Games
from the main menu and it won’t work. We could restore normal
running with sudo chmod a+x launcher.sh, but instead we’ll use:
sudo chmod 755 launcher.sh.

Octal version
Those numbers are an octal representation of user, group, and
others’ permissions: in each case, read is represented by 4, write
by 2, and execute by 1, all added together. So here we have 7s for
read+write+execute for user, and 5 for read+execute for group and all
other users. ls -l and you’ll see we’re back to -rwxr-xr-x.

You can use chown to change who owns a file and chgrp to change
which group it belongs to. Make a new text file and sudo chown
root myfile.txt – now try editing it and you’ll find that while you
can read the file, you can no longer write to it. You can also make a
file that you can write to and run, but not read!

In the next chapter, we’ll be doing useful things with the output of
our commands; before moving on, though, why not try your hand at
robots from the bsdgames package we installed?

[PROBLEMS?]
Fine-grained
permissions
make for greater
security, but
can trip you up.
Typing sudo
in front of a
command that
doesn’t work is
both a diagnosis
and a quick
workaround of
a permissions
problem.

The id command
shows what

group access
you have, for

permission to
use and alter

files and devices

21[Manipulating Text]

[CHAPTER FOUR]
MANIPULATING
TEXT
Discover pipes and learn how to connect multiple simple
commands together for more powerful text processing

ESSENTIALS

21

22

ESSENTIALS

[Chapter Four]

he UNIX family of operating systems, which includes other
flavours of GNU/Linux and also Apple’s macOS, deals with
data from commands as streams of text. This means that

commands can be chained together in countless useful ways. For now,
though, we’ll focus on giving you a firm foundation to building your
own custom commands.

Getting our feet wet
When a command is called at the terminal, it is given three streams,
known as standard input (stdin), standard output (stdout), and
standard error (stderr). These streams are plain text, and treated by
the Pi as special files. As we noted in chapter 3, ‘everything is a file’:
this is what gives the Pi and other UNIX family systems the ability to
put together simple commands and programs to build complex but
reliable systems.

Normally, stdin is what you enter into the terminal, while stdout
(command output) and stderr (any error messages) appear together.
The reason the last two have a separate existence is that you may want
to redirect one of them – error messages, for example – somewhere
away from the regular output your commands produce. We’ll look
at separate error messages later, but first we need to know how to
redirect and connect our output to other commands or files.

Connecting commands together are pipes, the ‘|’ symbol found
above the backslash on both GB and US keyboards (although the two

T

If you know there’s more
than one item the same

and you don’t want to
see it, or need a new list
without duplicates, uniq
will get rid of the spares

Building on simple
commands. The arrows
connect to streams and

files (input or output)
while pipes chain the

output of one program
to the input of another

[ABSOLUTE
PATH]
We’re using ~/
mylisting4.txt
with ~ short for
/home/pi. If you
cd to ~ then you
can simply use
the file name
without the ~/

23

 [CONQUER THE COMMAND LINE]

[Manipulating Text]

 [CONQUER THE COMMAND LINE]

keyboards for English speakers place the \ respectively to the left
of Z, and at the far right of the home row). When you type a command
such as ls -l, the output is sent by Raspbian to the stdout stream,
which by default is shown in your terminal. Adding a pipe connects that
output to the input (stdin stream) of the next command you type. So…

 ls -l /usr/bin | wc -l

…will pass the long listing of the /usr/bin directory to the wordcount
(wc) program which, called with the -l (line) option, will tell you how
many lines of output ls has. In other words, it’s a way of counting how
many files and folders are in a particular directory.

Search with grep
One of the most useful commands to pass output to is grep, which
searches for words (or ‘regular expressions’, which are powerful
search patterns understood by a number of commands and
languages), like so:

grep if /usr/share/python_games/catanimation.py

This displays every line in the catanimation.py file containing the
character sequence ‘if’ (Fig 1, overleaf) – in other words not just the
word ‘if’, but words like ‘elif’ (Python’s else if), and words like ‘gift’
if they were present. You can use regular expressions to just find lines
with ‘if’, or lines beginning with ‘if’, for example.

Piping search results and listings to grep is the way we find a needle
in one of Pi’s haystacks. Remember dpkg from the last chapter, to see
what was installed? Try…

dpkg -l | grep -i game

…to remind yourself which games you’ve installed (or are already
installed). The -i switch makes the search case insensitive, as the
program may be a ‘Game’ or ‘game’ in the description column.
A simple dpkg -l | more lets you see output a page at a time.
sort will, as the name suggests, sort a listing into order, with various

tweaks available such as -f to bring upper and lower case together.

[REGEXP]
Regular
expressions
(regexp)
are special
characters used
in text searches,
such as [a-z]
to match any
letter (but not
numbers), and
^ to match to
the beginning of
a line.

24

ESSENTIALS

[Chapter Four]

One way to collect unsorted data is to combine lists. sort will put the
combined listing back in alphabetical order:

ls ~ /usr/share/python_games | sort -f

Suppose you copied one of the games to your home directory to
modify: you know it’s there, but you don’t want to see the same name
twice in the listings. uniq will omit the duplicated lines or, with the -d
switch, show only those duplicates.

ls ~ /usr/share/python_games | sort -f | uniq

File it away
Pipes are not the only form of redirection. > (the ‘greater than’ symbol)
sends the output of a program into a text file, either creating that text
file in the process, or writing over the contents of an existing one.

ls /usr/bin > ~/mylisting4.txt

Now look in mylisting4.txt and you’ll see the output of ls
/usr/bin. Note that each item is on a separate line (Fig 2). Your
terminal displays multiple listings per line for space efficiency;
however, for easy compatibility between commands, one listing
per line is used. Most commands operate on lines of text; e.g., grep
showed you in which lines it found ‘if’. Note that some commands
need a dash as a placeholder for the stdin stream being piped to them:

 echo "zzzz is not a real program here" | cat mylisting4.txt -

Fig 1 No matter
how long the
file, grep will

dig out the
lines you need.
It’s also handy
for finding the

results you want
from a multi-
page output

[FILING
HOMEWORK]
There are many
more commands
beyond grep,
sort and
uniq that can
be chained
together. Take
a look at cut if
you’re feeling
adventurous.

 [CONQUER THE COMMAND LINE]

25[Manipulating text]

Appending
If you want to add something to the end of a file without overwriting
the contents, you need >>.

 echo "& one more for luck!" >> ~/mylisting4.txt

echo simply displays whatever is in the quote marks to stdout; the -e
switch lets you add in special characters, like \n for newline (see below).
You can look at the last few lines of a file with tail ~/mylisting4.txt.
< will link a program’s input stream to the contents of a file or stream.
Make an unsorted list to work on, and sort it:

echo -e "aardvark\nplatypus\njellyfish\naardvark" >
list1
sort < list1

You can also combine < and >:

head -n 2 < list1 > list2

…will read from list1, passing it to head to take the first two lines,
then putting these in a file called list2. Add in a pipe:

sort < list1 | uniq > list3

Lastly, let’s separate that stderr stream: it has file descriptor 2 (don’t
worry too much about this), and 2> sends the error messages to any file
you choose:

cat list1 list2 list3
list42 2>errors.txt

The screen will display the ‘list’
files you do have, and the ‘No such
file or directory’ message(s) will end
up in errors.txt – 2>> will append
the messages to the file without
overwriting previous contents.

Fig 2 With redirection, you can get all of the output from
a command saved straight into a text file. Save your error
messages to ask about them on the forums!

26 [Chapter One]26 [Chapter Five]

[CHAPTER FIVE]
CUSTOMISE THE
COMMAND LINE

We make Raspbian a little more personal as we get it
to behave and look just the way we want it to

ESSENTIALS

27

 [CONQUER THE COMMAND LINE]

[Customise the Command Line]

ake a look at that blinking cursor on your terminal, and at
what’s behind it: pi@raspberrypi ~ $

The $ is known as the ‘dollar prompt’, awaiting your
command; before it you see the ~ (tilde), shorthand for ‘home’ – which
is /home/pi in this case. Before that is [user name]@[computer name],
in the form pi@raspberrypi. Not only is this informative (at least if
you’ve forgotten who and where you are), but it’s also something you
can change and personalise.

New user
Let’s start with that user name: pi. If more than one person in your
family uses the Pi, you may want to keep the pi user for shared
projects, but set up individual login accounts for family members,
including yourself. Creating a new user in Raspbian is easy: sudo
adduser jo will create a new user account named jo. You will be
prompted for a password (pick a good one) and lots of irrelevant info
(dating back to shared university computers of the 1970s) that you can
safely ignore by just pressing ENTER at each prompt. Now we have
a user account for jo, have a look at /home/jo. Does it look empty?
Use ls -A. Jo has never logged into the computer, so you will see the
absence of most of the contents of /home/pi for now, but there is a
.bashrc and a couple of other config files.

T

Share your Pi:
make new user

accounts and
others can log

in or switch
users from a

command-line
session

The command-
line environment
is personal to
each user. You
can change your
identity with or
without a change
of environment,
depending upon
what you need to
do in another role

28

ESSENTIALS

[Chapter Five]

Not every user has a home
directory and logs in: enter
cat /etc/passwd and you’ll see
a lot of users listed that aren’t
people. This is because files and
programs running on a UNIX-

type system have to belong to a user (and a group – take a look at
/etc/group), as we saw back in chapter 1 when we did ls -l. The
user passwords are fortunately not listed in the /etc/passwd file in
plain text, so if you want to change a password you’ll need to use the
passwd command: sudo passwd jo will change the password for
user jo. If you’re logged in as user pi, then simply calling passwd will
prompt you to change pi’s password.

Transformations in the virtual world are always easier than those
in nature, and this is the case with switching from being ‘pi’ to ‘jo’: we
use the change (or substitute) user command, su, like so: su jo. After
typing this, you should see the prompt change to jo@raspberry; you
can also confirm who you are logged in as with whoami.

Changing identity
su - jo (note the dash) is usually preferred, as you’ll gain all of jo’s
specific environment settings, including placing you in /home/jo.
Note that on many other Linux systems, su on its own will enable you
to become the root or superuser, with absolute powers (permissions
to run, edit, or delete anything). Raspbian (and some other popular
GNU/Linux systems like Ubuntu) prefer sudo to run individual
programs with root permissions. Root’s godlike powers may be
temporarily attained with sudo -s – try it (as user pi) and note how
the prompt changes (enter exit to exit) – but it’s generally a bad
idea to run with more permissions than you need! For any user, you
can customise elements of their command-line use most simply by

Above Bash stores
information, from

your previous
‘present working

directory’ to
who you are, in

environment
variables like

OLDPWD and USER.
See individual

variables with e.g.
echo $USER,

or view them all
with env

[HOME RUN]
If you’re logged
in as user pi, then
~ is a shortcut to
/home/pi
– but ls ~jo
can be used as
a shortcut to
list /home/jo,
substituting any
other user name
as desired, with
tab completion
working after ~j
is typed.

29

 [CONQUER THE COMMAND LINE]

[Customise the Command Line]

editing ~/.bashrc. Take a look through that configuration file now
(as user jo): more ~/.bashrc. Note a number of variables in all capital
letters, such as HISTSIZE and PS1. The last of these controls the
prompt you see, currently jo@raspberry ~ $. To change it (for
the duration of your current terminal session), try something like:
export PS1="tutorial@magpi > ".

This is a temporary change: type exit and you’ve left the su value
of jo, so you’ll see pi@raspberry ~ $ once more. If you su back to jo,
the magpi prompt will still be gone. To make your change permanent,
you need to put the PS1 value you want into ~/.bashrc. A search around
the web will bring up many fancy options for better customising the
Bash prompt.

The ~/.bashrc file is read upon each login to a Bash session, or in
other words, every time you log into a console or open a terminal.
That’s unless you change Raspbian’s default shell away from Bash,

something you may have reason to do in the future – there are
interesting alternatives available for extra features or for smaller
memory footprint – but let’s not worry about that for now. You can
put all sorts of commands in there to personalise your environment:
command aliases are great for regularly used combinations.

Alias
As user pi, see what’s there with: grep alias ~/.bashrc. There are
a few aliases already in there, particularly for the ls command. One
entry is: # alias ll='ls -l'. This sounds quite useful, although the
indicates that it is ‘commented out’, which means that it will not be
read by Bash. Open .bashrc in your text editor (double-click the file in
File Manager after pressing CTRL+H to show hidden files) – the simple
Text Editor will do for now as although we’ve touched on using nano
for editing text from the command line, we aren’t going to go into this

Transformations in the
virtual world are always
easier than those in nature

[BASIC
ACCOUNT]
adduser creates
a new user, then
takes care of
all of the extra
details like
making a home
directory. If all
you want is a
user created
with no extra
frills, then the
command you
want is useradd.

30

ESSENTIALS

[Chapter Five]

in detail until the next chapter. Removing the # will mean that now
when you type ll, you’ll get the action of running ls -l. Handy,
but we could make it better. Change it to: alias ll='ls -lAhF' and
you’ll get an output in kB or MB, rather than bytes, along with trailing
slashes on directory names and the omission of the ever present .
and .. (current and parent) directories. Changes take effect after you
next start a Bash session, but then you can just run that alias as a
command (Fig 1). To disable an alias for a session, use: unalias ll.

Key point
We’ll end with the very first thing many users need to change:
the keyboard map. The system-wide setting is found in
/etc/default/keyboard, but often you need to change it just for
individual users. If £ signs and letters without accents are not
sufficient for them, log in as the user who wants a different
keyboard, or add sudo and the correct path to the commands below.
For example, for a Greek keyboard:

touch ~/.xsessionrc
echo "setxkbmap el" > ~/.xsessionrc

Replace el with pt, us, or whatever language you desire. Note that
the config file we created – .xsessionrc – holds settings that are read
when we log in to the GUI, so the keyboard setting will cover not just
the terminal, but every app used in the session.

[WHO AM I?]
From a virtual
console (CTRL+
ALT+F1 to F6), su
and that’s who
you’re logged
in as. From
an xterm, you
can change to
someone else,
but start another
app from the
menu and you’ll
be back to your
original login.

Fig 1 Those
terse, two- or

three-letter
commands are

not set in stone:
make your own

shortcuts to
keep, or just

for use over a
specific session

31[Don’t Panic] 31[Connecting Disks]

[CHAPTER SIX]
CONNECTING
DISKS
For chapter six, we’re tackling the
management of removable storage

ESSENTIALS

31

32

ESSENTIALS

[Chapter Six]

lthough Raspbian will, when booted as far as the GUI,
automatically mount any disk-type device (USB flash key,
camera, etc.) plugged into the USB port and offer to open it

for you (Fig 1, overleaf), you may wish to get more direct control of the
process. Or, as is more often the case, you may want to mount a disk
when the Raspberry Pi is running a project that doesn’t involve booting
as far as the GUI, as it’s not necessary for most sensor projects.

Connected or mounted?
Plugging a drive or flash memory device into your Pi (connecting it to
your computer) is not the same as making it available for the Pi to
interact with (mounting it) so that Raspbian knows what’s on it and
can read, write, and alter files there. It’s an odd concept to accept: the
computer knows there’s a disk plugged in, but its contents remain
invisible until the Pi is told to mount it. It’s a bit like seeing a book on
your shelf, but not being allowed to open or read it.

Disks and disk-like devices are mounted by Raspbian on a virtual file
system, and you’ll rarely need to worry about what goes on beneath
that layer of abstraction, but to see some of it, type mount. The
information displayed is of the form device on mount point, file-system
type, options. You’ll see lots of device ‘none’ for parts of the virtual

A

Raspbian, while
presenting a simple
surface, also lets
you dig deep for
information when you
need to change default
behaviour. That’s real
user-friendliness!

Even simple
utilities have

multiple uses: df,
by showing space
available, reminds

the user which disks
are mounted and
can be accessed

by the Pi

[IN DEPTH]
If you want to
delve deeper into
what goes on
inside Raspbian
and other GNU/
Linux systems,
try Brian Ward’s
excellent
book, How
LinuxWorks
(magpi.cc/
ZEhaBF).

http://magpi.cc/ZEhaBF
http://magpi.cc/ZEhaBF

 [CONQUER THE COMMAND LINE]

33[Connecting Disks]

system that you don’t need to worry about; the devices that concern us
start with /dev/ and have names like /dev/mmcblk0p1 for partitions
of the Pi’s SD card, and /dev/sda1 for plugged-in USB drives.

Plug in a USB drive (a flash drive should work fine, but some hard
drives may require a separate power supply). Like most computer
desktops, Raspbian automatically mounts the disks, so (unless
you boot to a virtual console) you’ll need to unmount it. mount will
show an entry beginning something like /dev/sda1 on /media/pi/
UNTITLED… and you can unmount with sudo umount /dev/sda1
(yes, that is umount without an ‘n’). An error will result if the device
is in use, so change directory and/or close apps using files from the
device. Now we can mount it just the way we want.

Finding the disk
The /dev/sda1 refers to the first, or only, partition (a section of the hard
drive that is separated from other segments) on /dev/sda. The next
device plugged in will be /dev/sdb1. You can see what’s being assigned
by running tail -f /var/log/messages, then plugging in the USB
device. On other Linux systems, if /var/log/messages draws a blank,

try /var/log/syslog. Stop the tail with CTRL+C. Another way of seeing
connected devices that aren’t necessarily mounted is fdisk, a low-level
tool used to divide disks up into partitions, before creating file systems
on those disks (see the ‘Format’ box on page 35). Called with the list
option, sudo fdisk -l, it performs no partitioning, but simply lists
partitions on those disks connected to your Pi. It also gives file-system
information, which you need in order to mount the disk. Lastly, you
need a mount point (somewhere to place the device on the file-system
hierarchy) with appropriate permissions. Create one with:

sudo mkdir /media/usb
sudo chmod 775 /media/usb

[DISK &
DISK SPACE]

The df
command shows
you space on
mounted drives:
just type df and
you’ll also get a
list of connected
drives. It’s more
readable than
mount -l, though
lacking file type
info. It’s also
quicker to type!

An error will result if the device is in use,
so change directory and/or close apps

34

ESSENTIALS

[Chapter Six]

Mount the disk with sudo mount -t vfat /dev/sda1 /media/usb,
where vfat (or NTFS or ext2) is the file-system type.

File-system table
Raspbian knows which disks to mount at boot time by reading the
file-system table (/etc/fstab), and we could put our /dev/sda1 in
there, but if we start up with two drives plugged in, the wrong one
may be selected. Fortunately, disks (or rather, disk partitions) have
unique labels known as UUIDs randomly allocated when the partition
is created. Find them with sudo blkid, which also helpfully tells you
the label, if any, that often contains the make and model of external
drives, or look in /dev/disk/by-uuid.

For an NTFS-formatted drive, we called sudo nano /etc/fstab and
added the following line to the end of the file:

/dev/disk/by-uuid/E4EE32B4EE327EBC /media/usb
ntfs defaults 0 0

This gives the device name (yours will be different, of course),
mount point, file-system type, options, and two numeric fields: the
first of these should be zero (it relates to the unused dump backup
program), while the second is the order of check and repair at boot:
1 for the root file system, 2 for other permanently mounted disks for
data, and 0 (no check) for all others. man mount will tell you about
possible options.

Fig 1 Raspbian
wants to mount

plugged-in disks,
and take care of

the details for
you – note that

the GUI tells you
it’s ‘Windows

software’ – while
the command

line beneath has
information for

you to take control
when you need
the job done in

a particular way,
telling you it’s an
NTFS file system

Editing with nano
We touched briefly on nano in
chapter 2. Looking in a little more
depth, the first thing to be aware
of is the dozen shortcuts listed
across the bottom two lines of the
terminal: each is the CTRL key
(represented by the caret ^) held
at the same time as a single letter
key. For example, ^R for ReadFile
(i.e. open), ^O for WriteOut (in
other words, save), and ^X for
Exit. Remember those last two for
now, and you’ll be able to manage nano. However, if you learn more of
them, you will really race through your editing tasks.

While nano lacks the power features of Emacs and Vim, its two
main command-line code editor rivals, it has useful features such
as a powerful Justify (^J), which will reassemble a paragraph of line-
break strewn text into an unbroken paragraph, or apply line breaks at
a fixed character length. This is a legacy of its development for email
composition. ^K cuts the line of text the cursor is on, but it isn’t just
a delete function: each cut is added to a clipboard. ^U will paste the
entire clipboard at the cursor position: it’s great for gathering together
useful snippets from a longer text.

Hit ^O to save fstab, and the shortcut listing changes, with many
now beginning M instead of ^ – this is short for Meta, which means
the ALT key on your keyboard (once upon a time, some computers had
several modifier keys, such as Super and Hyper). One ‘hidden’ shortcut
after ^O is that at this point, ^T now opens a file manager to search for
the file/directory where you want to save.

After saving, exit nano; now sudo mount -a will mount the external
drive at the desired mount point (Fig 2), regardless of what else is
plugged in. If you have other new entries in /etc/fstab, then sudo
mount /media/usb1t (or whatever entry you put in fstab) will mount
just that chosen device if you don’t want to mount any of the others.

Having got inside connected disks, the next chapter will see us
accessing all of the Pi, but remotely, from anywhere on the planet with
an internet connection.

 [CONQUER THE COMMAND LINE]

35

Fig 2 Once we’ve
put our removable
disk in the file-
system table
(/etc/fstab),
mount -a will read
the config from
there to mount
your disks, saving
you from having
to remember
the details

[FORMAT]
Copying a disk
image negates
the need to
format the disk.
Should you
need to format
a new partition,
or convert a disk
to ext4 format,
read the manual:
man mkfs and
for individual
file-system types
such as man
mkfs.ext4

[Connecting Disks]

36

ESSENTIALS

[Chapter One]36 [Chapter One]36 [Chapter One]36 [Chapter Seven]

[CHAPTER SEVEN]
PREDICTABLE
NETWORKING
In this chapter, we give the Raspberry Pi a permanent
network address of its own

ESSENTIALS

37

 [CONQUER THE COMMAND LINE]

[Predictable Networking]

aspbian takes care of automatically connecting in most
situations, but sometimes you need to override automatic
configurations to ensure a consistent network setting for your

Raspberry Pi project: Raspbian has the tools, and we’ll show you the
essentials you need to stay connected.

Plug an Ethernet cable from your ADSL router / modem to your
Raspberry Pi (or connect via wireless LAN) and, automatically,
Raspbian knows where it is on the network, and can talk to the
outside world.

All of this is thanks to DHCP – Dynamic Host Configuration Protocol
– which provides network configuration for every device connected
into a network. Typically, this comes in the form of an IPv4 (Internet
Protocol version 4) address, a pair of four numbers separated by a
period. For example: 192.168.0.37

The first two sets of numbers, 192.168, mark the start of a private
range. These are the numbers for all devices in your house, ranging
from 192.168.0.0 to 192.168.255.255.

Check your Raspberry Pi’s current connection with the ifconfig
command. This should show, amongst others, a line like inet
192.168.0.37 (with your own numbers). This will be below the eth0

R

The ifconfig
command tells
you information
about your
Raspberry Pi’s
network address

The IP address is likely
to be a private address
in the range beginning

192.168.0.0. Here we
can see it beneath eth0
(because our Raspberry

Pi is connected via an
Ethernet cable). Our

address is 192.168.0.37

38

ESSENTIALS

[Chapter Seven]

section if you are connected via Ethernet, or under the wlan0 section if
you’re connected wire wireless LAN.

A faster way to get your IP address is to enter hostname -I on the
command line.

How to set up up your Raspberry Pi to have a static
IP address
Usually when you connect a Raspberry Pi to a local area network (LAN),
it is automatically assigned an IP address. Typically, this address will
change each time you connect.

Sometimes, however, you might want your Pi to boot up with the
same IP address each time. This can be useful if you are making a small
self-contained network, or building a standalone project such as a robot.
Here’s how to do it.

Edit the file /etc/dhcpcd.conf as follows (Fig 1):
Type sudo nano /etc/dhcpcd.conf at the command prompt. Scroll

to the bottom of the script, and add the following lines:

Fig 1 Edit the
/etc/dhcpcd.conf

file to determine
which static IP

address to
use with a

Raspberry Pi

You might want your Pi to boot up
with the same IP address each time

39

 [CONQUER THE COMMAND LINE] [CONQUER THE COMMAND LINE]

interface eth0
static ip_address=192.168.0.2/24
static routers=192.168.0.1
static domain_name_servers=192.168.0.1 8.8.8.8

interface wlan0
static ip_address=192.168.0.2/24
static routers=192.168.0.1
static domain_name_servers=192.168.0.1 8.8.8.8

Save the file with CTRL+O and then exit nano with CTRL+X.

Your Raspberry Pi will now boot up with the IP address 192.168.0.2
every time; we didn’t use 192.168.0.1 as this is reserved for the router.
You can of course use any address you like, but in the configuration
above, the range must be between 192.168.0.2 and 192.168.0.255.

Reboot with sudo shutdown -r now. Log in and type hostname
-I. You should then see the IP address you set in the eth0 or wlan0
entry (192.168.0.2).

[Predictable Networking]

Fig 2 Use ping
from another
computer to detect
if your Raspberry
Pi is responding to
network requests

40

ESSENTIALS

[Chapter Seven]

Normally you don’t want your computer set to use a static IP address.
You can change the network configuration back by editing dhcpcd.conf
again using sudo nano /etc/dhcpcd.conf. Remove all the lines you
added in the previous step, then save the file again.

Ping!
Ping is the most basic tool in the network testing armoury, but one
which is often called upon. It sends an ICMP (Internet Control Message
Protocol) ECHO_REQUEST to a device on the network. ICMP is built into
every connected device and used for diagnostics and error messages:
a ping will produce a reply from the pinged machine, which tells you
it is on, and connected, and that the network is working between you
and it. Information about packets lost, and time taken, also helps with
fault diagnosis.

A successful ping localhost from the Raspberry Pi tells you not just
that the local loopback interface is working, but that localhost resolves
to 127.0.0.1, the local loopback address. Name resolution is the cause of
many computing problems – see ‘Domain Name Servers’ box. Now ping
the Pi from another machine on your local network: ping 192.168.0.2
(Fig 2) – you’ll need to use the static IPv4 address you set, rather than ours,
of course. If you’re doing this from a Windows machine, ping defaults to
five attempts; from another UNIX machine (another Pi, a Mac, or Ubuntu
or other GNU/Linux), it will carry on until you stop it with CTRL+C, unless
you set a number of ECHO_REQUEST sends with -c like so:

ping -c 5 raspberrypi.org

IPv6
The four-digit IP address style we use (such as 192.168.0.2) is IPv4.
A newer standard, IPv6, is becoming more common. These are
longer 128-bit addresses represented in hexadecimal (for example,
fd51:42f8:caae:d92e::1). Look at the example code in dhcpcd.conf for
setting up a static address with IPv6.

Free / public DNS
As well as dynamic DNS providers, some of those listed at FreeDNS.com
offer public DNS servers. For a wider listing of alternatives to Google’s DNS
servers, have a search on Google itself.

[DOMAIN NAME
SERVERS]

We added
192.168.0.1
8.8.8.8 to
our domain_
name_servers
line in /etc/
dhcpcd.conf.
This is for the
Google public
domain name
server (DNS). The
DNS maps public
IP addresses like
raspberrypi.org
to IP addresses
(in this case
93.93.128.230).
You’ll need
to add a DNS
reference to
access websites
in a browser.

http://FreeDNS.com
http://raspberrypi.org

41[Don’t Panic] 41[Don’t Panic] 41[Stopping A Process]

[CHAPTER EIGHT]
STOPPING A
PROCESS
As close to perfect as Raspbian is, things can go wrong . In this chapter,
we learn that there’s no need to turn the Raspberry Pi off and on again:
just kill the process!

ESSENTIALS

41

42

ESSENTIALS

[Chapter Eight]

ver lost the ‘off switch’ for a program? Sometimes a piece of
software you’re running seems to have no inclination to stop:
either you cannot find how to quit, or the app has a problem,

and won’t respond to your Q, CTRL+C, or whatever command should
close it down.

There’s no need to panic, and certainly no need to reboot: just
identify the process and quietly kill it. We’ll show you how, and look at
what else can be done with knowledge of processes.

Processes
Find the many processes running on your Pi with the ps command. As
a minimum, on Raspbian, it’s usually called with the a and x switches –
which together give all processes, rather than just those belonging to a
user, and attached to a tty – and with u to see processes by user; w adds
wider output, and ww will wrap over the line end to display information
without truncating.

Type ps auxww to see, then try with just a or other combinations.
You will notice that these options work without the leading dash
seen for other commands. Both the lack of dashes, and the particular
letters, a and x, date back to the original UNIX ps of the early 1970s,
maintained through various revisions by one of UNIX’s two family

E

Programs running in
the terminal can be put

to sleep by sending to
the background – from

where they can easily be
brought back with fg

Keep an eye on your
processes, and you’ll also

be able to see what’s
hogging the Pi’s CPU and

memory resources

[Stopping A Process] 43

 [CONQUER THE COMMAND LINE]

branches, BSD, and baked into the first GNU/Linux ps. UNIX’s other
branch, System V, had extended and changed ps with new options and
new abbreviations for command switches, so for ps ax you may see
elsewhere ps -e (or -ef or -ely to show in long format).

The ps aux listing has various headers, including the USER which
owns the process, and the PID, or Process IDentification number. This
starts with 1 for init, the parent process of everything that happens in
userspace after the Linux kernel starts up when you switch the Pi on.

Knowing the PID makes it easy to kill a process, should that be
the easiest way of shutting it down. For example, to kill a program
with a PID of 3012, simply enter kill 3012, and to quickly find the
process in the first place, use grep on the ps list. For example, locating
vi processes:

ps aux | grep -i vi

The -i (ignore case) isn’t usually necessary, but occasionally a
program may break convention and contain upper-case letters in
its file name. You can also use killall to kill by program name:
killall firefox

Piping commands
Naturally, you can pipe ps’s output to select the PID and feed directly
to the kill command:

kill $(ps aux | grep '[f]irefox' | awk '{print $2}')

We don’t have space for an in-depth look at awk (we’re using it here
to print the second field of grep’s output: the PID), but the [f] trick
at the beginning of Firefox (or whatever named process you want to
kill) prevents the grep process itself being listed in the results; in the
vi example above, grep found the grep process itself as well as vi (and
anything with the letter sequence vi in its name).

The output of ps also shows you useful information like percentage
of memory and CPU time used, but it’s more useful to see these
changing in real time. For this, use top, which also shows total CPU
and memory use in the header lines, the latter in the format that you
can also find by issuing the command free. For an improved top:

[KEEP ON TOP]

When using a
virtual console,
it can be worth
keeping htop
running so that
if there are any
problems, you
can CTRL+ALT-
FN there for a
quick look for any
problems – even
if the GUI freezes.

44

ESSENTIALS

[Chapter Eight]

sudo apt-get install htop

htop is scrollable, both horizontally and vertically, and allows you
to issue commands (such as k for kill) to highlighted processes. When
you’ve finished, both top and htop are exited with Q, although in htop
you may care to practise by highlighting the htop process and killing it
from there (see Fig 1). htop also shows load over the separate cores of
the processor if you have a Pi 2 or 3.

Background job
Placing an ampersand (&) after a command in the shell, places the
program in the background – try with: man top & and you’ll get an
output like: [1] 12768.

The first number is a job number, assigned by the shell, and the
second the PID we’ve been working with above. man top is now running
in the background, and you can use the job control number to work with
the process in the shell. Start some other processes in the background
if you wish (by appending &), then bring the first – man top – to the
foreground with fg 1. Now you should see man running again.

You can place a running shell program in the background by
‘suspending’ it with CTRL+Z. fg will always bring back the most
recently suspended or backgrounded job, unless a job number is
specified. Note that these job numbers apply only within the shell
where the process started. Type jobs to see background processes;
jobs -l adds in process IDs (PID) to the listing.

Signals
When we send a kill signal from
htop, we are given a choice
of signal to send. The most
important are SIGTERM, SIGINT,
and SIGKILL.

The first is also the signal kill
will send from the command line
if not called with a modifier: it
tells a process to stop, and most
programs will respond by catching

Fig 1 htop tells you
what’s running,
what resources

it’s using, and lets
you interact with

the process, even
killing htop from

within htop

[QUICKER BOOT]

The start up
process of
Raspbian
Wheezy is
controlled by the
traditional SysV
init. Raspbian
Jessie, like other
GNU/Linux
distributions,
has moved to
the faster (but
monolithic)
SystemD – we
touch on some of
the differences in
chapter 11.

[Stopping A Process]

 [CONQUER THE COMMAND LINE]

45

the signal, and first saving any data
they need to save and releasing system
resources before quitting.
kill -2 sends SIGINT, which is

equivalent to stopping a program from
the terminal with CTRL+C: you could
lose data. Most drastic is kill -9 to
send SIGKILL, telling the kernel to let
the process go with no warning. Save
this one for when nothing else works.

Mildest of all is the Hang Up (HUP)
signal, called with kill -1, which many daemons are programmed to
treat as a call to simply re-read their configuration files and carry on
running. It’s certainly the safest signal to send on a critical machine.

Staying on
nohup will run a program which will continue after the terminal
from which it is started has closed, ignoring the consequent SIGHUP
(hangup) signal. As the process is detached from the terminal, error
messages and output are sent to the file nohup.out in whichever
directory you were in when you started the process. You can redirect
it – as we did in chapter 4 – with 1> for stdout and 2> for stderr; &> is a
special case for redirecting both stdout and stderr:

nohup myprog &>backgroundoutput.txt &

One use of nohup is to be able to set something in motion from a
SSH session, which will continue after an interruption. For example,
restarting the network connection to which you are connected:

sudo nohup sh -c "ifconfig wlan0 down && ifconfig
wlan0 up"

Note that the nohup.out log file created here will need sudo
privileges to read – or reassign with:

sudo chown pi:pi nohup.out

Fig 2 Everything
running has a
process ID (PID)
that can be used
to control that
program; find them
all with ps aux

[KEEP ON
RUNNING]

nohup is useful
for a program
that will be
running for
some time in the
background –
perhaps a sensor
project you are
working on – until
you feel happy
enough to add
it to Raspbian’s
startup
processes.

46

ESSENTIALS

[Chapter One]46 [Chapter One]46 [Chapter Nine]

[CHAPTER NINE]

REMOTE PI
Learn how to access the Raspberry Pi from remote PCs
and devices with Secure Shell (SSH)

ESSENTIALS

47

 [CONQUER THE COMMAND LINE]

[Remote Pi]

t’s great that the Raspberry Pi is so portable, but sometimes
you may want to use it without taking it with you. Here, the
Pi’s default Raspbian OS is a real strength, as UNIX-like

operating systems have been used this way for over 40 years.
Over time, as the internet has given the opportunity for malicious

users to connect to computers, old standards like Telnet and rlogin
have been replaced by Secure Shell (SSH), based on public-key
cryptography. Once set up, secure connections are simple, and open to
scripted, automatic connection for your projects. Note: you’re advised
to change your Pi’s login password – with passwd – before using SSH.

If the SSH server is not enabled by default on your version of
Raspbian, run sudo raspi-config and go to the advanced settings
to enable SSH. Check the IP address assigned to the Pi with ifconfig
(note the ‘inet addr’ for the eth0 or wlan0 interface). Now you can try
connecting from another computer on your network.

Connecting with SSH
From a Mac or GNU/Linux computer, use ssh from a terminal to
connect to the Pi. Assuming a default setup, and ifconfig revealing
an IP address of 192.168.0.2, connect with ssh pi@192.168.0.2 and
enter your password. You can use the OpenSSH client on Windows 10
PCs; for earlier PCs, install an SSH client like PuTTY (magpi.cc/uLytfk),
which also works with SCP, Telnet, and rlogin, and can connect
to a serial port. Android users can try the ConnectBot client.

I

The Raspbian install
image shares its

keys with everyone
else who has a

copy. Generate your
own, and personal

keys for the user
account, for secure

remote access

You can test on the
Pi if SSH is running,

and start the service
from the command

line – as you can any
service (look in

/etc/init.d/ and
/etc/init/ if you’re

curious about
other services)

http://magpi.cc/uLytfk

48

ESSENTIALS

[Chapter Nine]

You should now be at the command-line interface of your Pi. If you
got any sort of error, check from the Pi that SSH is really up and running
by entering ssh@localhost on the Pi itself. If that works, SSH is up and
running on the Pi, so take a closer look at network settings at both ends.

Hello, World
Now we can access the Pi on the local network, it’s time to share with the
world. Step one, for security reasons, change the PermitRootLogin yes
entry in /etc/ssh/sshd_config to read: PermitRootLogin no using
sudo nano. After making any changes to the SSH server’s configuration,
you must restart the service for them to take effect, or at least reload
the configuration file: sudo service ssh reload. Note there’s also a
file in /etc/ssh/ called ssh_config, which is for the SSH client; the d in
sshd_config is short for ‘daemon’, the UNIX term for a service which runs
constantly in the background.

You can also change port 22 to any unlikely number, but be sure to check
it still works. You’ll need to begin ssh -p 12123 (or whichever port you
have chosen) to tell your client you’re not using the default port 22.

To reach your Pi from anywhere on the internet, you need an IP address,
which will connect you to your board even though it’s behind an ADSL
router. Of course, if your Pi is in a data centre, with its own public IP
address, you don’t need any workaround.

There are numerous services such as DuckDNS.org providing free-of-
charge dynamic DNS (DDNS), to point a constant IP address to the changing
one allocated to you by your ISP. However, the largest of these, DynDNS,
has ended its free service, which provides a useful reminder that you
cannot assume that a free service will be around for ever.

There are several steps to configuring a DDNS setup, no matter
which service and software client you choose. Some are detailed in
the raspberrypi.org forums, and there’s a good guide to ddclient
at samhobbs.co.uk.

Otherwise, if your broadband router can handle both port forwarding and
dynamic DNS, you can set it up to point to port 22 (or a chosen alternate
port) on the Pi. You may even find your ISP offers static IP addresses.

Bye bye FTP
File Transfer Protocol (FTP) was not designed for security: data,
and even passwords, are transmitted unencrypted. The Secure Copy

[INTERRUPTED
SERVICE]
While you can
restart most
services with
sudo service
ssh restart,
replacing
restart with
reload permits
configuration
changes to be
registered with
less disruption,
which is key for
some projects.

http://DuckDNS.org
http://raspberrypi.org
http://samhobbs.co.uk

49

 [CONQUER THE COMMAND LINE]

[Remote Pi]

Program (SCP), which runs over SSH, is best for transferring files. The
syntax of the command mimics the command-line cp program:

scp pi@192.168.0.2:/home/pi/testfile1 .

Here we’re transferring a file from the Pi, across a local network, to
the current location (the dot shortcut). Note that you can use wildcards
for groups of similarly named files, and can recursively copy directories
and their contents with the -r switch after scp.

A secure key
If you’re trying this on something other than Raspbian, you may not
have the SSH server installed. It’s often found in a package called
openssh-server. With Raspbian, you have a pair of keys (public and
private) in /etc/ssh/. Unfortunately, they’ll be the same as those
held by everyone else with a copy of the Raspbian image that you
downloaded. First, remove the existing keys:

sudo rm /etc/ssh/ssh_host_*

Alternatively, you can move them somewhere out of the way.
Regenerate the system-wide keys with:

sudo dpkg-reconfigure openssh-server

For keys personal to you as a user, type ssh-keygen -t rsa -C
"comment", where "comment" is anything you want to identify the
key with: name, email, or machine and project, for example. You’ll
be asked for a passphrase to secure the key – if you press ENTER,
you’ll get a key with no passphrase, which makes life easier when
making scripted (automated) connections, but removes an extra
layer of security. You can create keys from any computer with the
SSH package, and move the public key to the Pi, but we’ll work on the
assumption that the Pi is the only handy UNIX-like computer, and
we’ll be generating the keys there.

If you accepted the defaults, your personal keys will now be in
~/.ssh with the correct permissions. By default, sshd looks in
~/.ssh/authorized_keys for public keys, so we need to copy the

[SAMBA STEPS]

Samba is
extremely well
documented,
with separate
man pages for
everything from
smb.conf to
smbpasswd,
and excellent
online books
at samba.org –
look for smb.conf
examples.

http://www.samba.org

50

ESSENTIALS

[Chapter Nine]

contents of id_rsa.pub to there. The following
command will work even if you already have
an authorized_keys with contents (make
sure you use both >> symbols with no gap
between them):

cd ~/.ssh && cat id_rsa.pub >>
authorized_keys

Using SCP, copy the private key to ~/.ssh on
your laptop, or wherever you will access the Pi
from, removing it from the Pi if it’s to act as the

server. Once you confirm SSH works without passwords, you can edit
/etc/ssh/sshd_config to include PasswordAuthentication no. If you are
sticking with passwords, replace ‘raspberry’ with something stronger.

Shared drive
You may be using a service like Dropbox to share files between
machines. There is no need to do this on a local network, as the Samba
networking protocol on the Pi lets Windows PCs access it as a shared
drive (Fig 1, page 48). Samba is already installed in recent versions of
Raspbian, or you can install it using:

sudo apt-get install samba samba-common-bin

Edit /etc/samba/smb.conf with a WORKGROUP value (for Windows
XP and earlier; try workgroup = WORKGROUP) and/or HOME (For
Windows 7 and above). Ensure that Samba knows pi is a network user:

sudo smbpasswd -a pi

Then restart with:

sudo service samba restart

The Pi should now show up in Windows Explorer under Network.
You can fine-tune smb.conf for what’s shared (including printers),
and permissions.

[LOST KEYS?]

The private key
half of your key
pair should be
kept secure – but
safe, too. Keep
a backup of the
private key on a
memory card in
a safe place.

Fig 1 There’s a lot
of configuration

in Samba, but
simply adding

your WORKGROUP
name to the default
settings should get
you up and running

51[Don’t Panic] 51[Don’t Panic] 51

[CHAPTER TEN]
DOWNLOADING
& INSTALLING
We look at downloading and unpacking software,
and show you how to create new Raspbian SD cards

ESSENTIALS

51[Downloading & Installing]

52

ESSENTIALS

[Chapter Ten]

The tar command packs or unpacks
an archive of files and directories;
it also handles uncompressing
the download first

curl can be used in place of wget for simply downloading
files, but its strengths lie elsewhere, in its extensive
features – these take in everything from proxy support
and user authentication, to FTP upload and cookies

unning an apt command (see chapter 3) allows access to a
huge collection of software – several thousands of packages in
the main Raspbian repository – but sometimes we need to add
software from outside the main repository.

If we are lucky, we find that someone has packaged up the software
in the .deb format used by Raspbian, or even created a whole repository
to take care of the dependencies. We’ll look briefly both at adding
repositories, and dealing with other kinds of downloads, trying the
venerable vi editor along the way.

Information about repositories is kept in the /etc/apt/sources.list
file, which on a new install just contains the Raspbian repository.
Rather than editing this file to add other repositories, you are advised to
add them in a .list file to the /etc/apt/sources.list.d directory. To add a
new repository, use sudo nano to create a .list file there and inside it,
add a source in the following format:

deb http://apt.pi-top.com/raspbian/ jessie main

R

http://apt.pi-top.com/raspbian/

 [CONQUER THE COMMAND LINE]

53[Downloading & Installing]

Here, jessie is a Debian (and Raspbian) release name: all
Debian releases have been named after characters in the Toy Story
series of films since 1996 (former Debian project leader Bruce Perens
was involved in the early development of Debian while working at
Pixar). Stretch followed Jessie in June 2017.

Most software is in the main repository, which can be freely copied
or mirrored anywhere. Other components, like non-free, allow
repositories to contain software you may not be free to pass on,
keeping it separate from Raspbian’s FOSS repository.

wget & curl
Having added our repository source in a file in sources.list.d, we
need to get the key for it and use apt-key to install it. Packages
authenticated using keys added by apt-key will be considered trusted.

wget -O - -q http://apt.pi-top.com/apt.pi-top.com.
gpg.key | sudo apt-key add -

Wget downloads from the URL given. The -O switch directs the
download to stdout, from where it is piped to apt-key (the trailing
dash there tells apt-key to read its input from the stdin stream, which
is where it receives the output from wget). After any change to the
sources.list.d directory, you should run:

sudo apt-get update

This updates Raspbian’s knowledge of what’s available to install from
pi-top’s packages – for a full list, enter:

grep ^Package /var/lib/apt/lists/apt.pi-top.com_
raspbian_dists_jessie_main_binary-armhf_Packages

To install one, for example, sudo apt-get install 3d-slash.

Wget is a simple but robust download tool, with a powerful recursive
feature that helps fetch entire websites, but it does have mild security
risks, so be careful using it to fetch scripts. An alternative is curl, a file
transfer tool that works with many protocols and can be used for simple

[VI IMPROVED]

If you really
want to get to
grips with vim,
you’ll need to
sudo apt-get
install vim
– the vim.tiny
package already
in Raspbian is
very limited.

http://apt.pi-top.com/apt.pi-top.com.gpg.key
http://apt.pi-top.com/apt.pi-top.com.gpg.key

54

ESSENTIALS

[Chapter Ten]

downloads. It dumps to stdout by default; to save as a file with the same
name as the resource in the URL, use the -O switch. For instance:

curl -OSL https://pypi.python.org/packages/source/R/
RPi.GPIO/RPi.GPIO-0.6.5.tar.gz

Here, the -S switch will show any errors, while the -L switch will
enable curl to reattempt to fetch the requested file if the server reports
that it has a different location.

Unzip
The Python GPIO library downloaded above is compressed with gzip,
which losslessly reduces the size of files, and can be decompressed with
gunzip. The contents here are files rolled into a tar archive (instead of
.tar.gz, you’ll sometimes find similar archives ending .tgz), and the tar
command can do the decompression and untarring in one:

tar zxvf RPi.GPIO-0.6.5.tar.gz

Note that the dash is not needed for single letter options in tar.
The first switch, z, calls gzip to decompress the archive, then x
extracts the contents. v is verbose, informing you of the process as it
happens, and f tells tar to work with the named file(s), rather than
stdin. Miss out the z and tar should automatically detect the necessary
compression operation.

The result in this case is a folder containing, among other things, a
setup script to run the installation (read the INSTALL.txt file first):

cd RPi.GPIO-0.6.5
sudo python setup.py install

While gzip is more efficient than zip (and even more efficient options
like bzip2 are available), sometimes you’ll get a plain old zip file, in
which case unzip is the command you want.

unzip 2018-11-13-raspbian-stretch-lite.zip

[EASTER EGG]

Read man apt,
and you may
see: “This APT
has Super Cow
Powers.” If it’s
there, try typing
apt-get moo
to see what
happens.

https://pypi.python.org/packages/source/R/

 [CONQUER THE COMMAND LINE]

55[Downloading & Installing]

Disk image
Having downloaded and unzipped an image for Raspbian, you cannot
copy it across to a second microSD card (connected to the Pi via a
USB card reader) with regular cp, which would simply put a copy of
it as a file on the card. We need something to replace the SD card’s
file system with the file system and contents that exist inside the
Raspbian disk image, byte-for-byte, and for this we can use a handy
little built-in utility called dd.

dd converts and copies files – any files, even special devices like
/dev/zero or /dev/random (you can make a file full of zeroes or random
noise) – precisely copying blocks of bytes. To copy our Raspbian image,

we will need to unmount the secondary microSD card we’ve plugged
in via a USB card reader. Use sudo fdisk -l both before and after
plugging in the card (you can also use df to see what’s mounted) to see
attached devices. If, say, a /dev/sdb appears, with the size equal to the
SD card, then unmount with umount /dev/sdb1. Now copy the disk
image with:

sudo dd if=~/Downloads/2018-11-13-raspbian-stretch-
lite.img of=/dev/sdb bs=1M

Development of Raspbian’s ancestor UNIX started in 1969, so we’ve
covered a few utilities with a long heritage in this book, but that if= in
place of the usual dashes for command-line options indicates a lineage
stretching back to the early 1960s, and IBM’s Data Definition (DD)
statement from the OS/360 Job Control Language (JCL).

Be very careful that the destination matches the correct disk, or you
will lose the contents of another storage device! The bs=1M is a block
size default; 4M would be another safe option. Now put the card in
another Pi and go and have fun!

Be very careful that the
destination in the command
matches the correct disk

56

ESSENTIALS

56 [Chapter One]56 [Chapter One]56 [Chapter Eleven]

[CHAPTER ELEVEN]

We take a look at scripts to manage the way Raspbian
starts and shuts down

ESSENTIALS

START AND STOP AT
YOUR COMMAND

57

 [CONQUER THE COMMAND LINE] [CONQUER THE COMMAND LINE]

[Start and Stop at your Command]

ver the last few years, every major GNU/Linux distribution
– Raspbian included – has changed the way that it starts up.
This means that much of the older literature on bookshelves

and websites, dealing with where to put files in rc.local to get them to
automatically run at startup, is no longer correct – unless you’ve yet to
upgrade from Raspbian Wheezy.

One thing remains the same: although the first process the kernel
starts is not /sbin/init, but /lib/systemd/systemd (still with a PID of 1),
it is still the parent process of everything that happens in user space
once the Linux kernel has finished initialising devices and drivers, and
mounted the file system.

init gets everything else started, and usually ends with the prompt
inviting you to log in to your Pi. Recent versions of Raspbian hide most
of the messages that this startup process generates, but you can see
them by typing dmesg. They’re also stored in /var/log/kern.log.

Startup – init – is the start of user space; this is the place where
you can put your own programs to affect how the Raspberry Pi runs,
without having to modify the code of your Linux kernel! Traditionally,
GNU/Linux distributions implemented a version of the UNIX System V
init, which had a well-defined startup process with run levels that
would indicate whether the system was at startup, ‘single user mode’
(rescue mode – a handy way to get back in when you’ve lost your
password, or a security headache), console mode, the GUI, or heading
for shutdown.

O

Adding a service to
systemd creates a
symlink to its real

location as part of
the process – don’t

do it manually

With Raspbian
Jessie’s move

to systemd,
systemctl

replaces service
to restart, or

query status, of
server software

58

ESSENTIALS

58

Along the way, files in /etc with names beginning rc0 through rc6
get called – running startup scripts in /etc/init.d – and /etc/rcS.d which
contains files always called at startup, regardless of run level.

Those /etc/init.d scripts can be called directly to start or stop your
databases, web servers, or anything else that needs intervention.
Many support further commands such as status, to check a service is
running properly, and reload – the latter useful if you want a service
to take a look at fresh config settings without doing a full restart.

sudo /etc/init.d/couchbase-server status

Although the regular and predictable scripted startup of Sys-V init
makes it easy to place your own programs in the startup process –
particularly useful on an unattended Pi – the performance of a purely
sequential startup process is poor, even when booting from a solid
state disk. Enter systemd…

Systemd
Systemd (like Upstart – see ‘Refuseniks’ box on p62) can start
services in parallel, and can defer service starts until they are needed.
Rather than many scripts for individual components, a target is set,

dmesg gives you the
startup messages
from the kernel –
nuggets of useful

info buried in plenty
of legacy boot

information

[Chapter Eleven]

59

 [CONQUER THE COMMAND LINE] [CONQUER THE COMMAND LINE]

and systemd resolves the dependencies until it reaches that target,
avoiding any fixed startup sequence along the way.

Files are found under /etc/systemd/system and there’s a lot to learn,
but as Raspbian now starts up far more quickly, at least we’ve created
extra time for all that learning. The one thing to remember for any
user is that systemd and its service manager are controlled with the
systemctl command.

sudo systemctl restart ssh

…will restart the SSH server – something you’ll need to do if you
change the port it listens on, for example. For compatibility, as well
as /etc/init.d scripts to start and stop services, the system of service
commands that worked on older versions of Raspbian, such as

sudo service apache2 reload

…still works (here we ask a running Apache2 Web server to reread its
configuration files).

Under /etc/systemd/system/multi-user.target.wants you will find
files like cron.service which, when examined closely with ls -l, you’ll
see are links to files of the same name in /lib/systemd/system (other
GNU/Linux distributions may place the files under /usr/lib).

Don’t worry if what’s inside these files looks confusing; there’s
a logic to them with their conditional dependencies, but you can
safely forget about them until you need to get some software working
automatically on every system restart for your Pi project. Even then,
we’ll show you another way with crontab – otherwise you’ll need to be
aware of the following, as those links aren’t created manually:

sudo systemctl enable postgresql.service

…will create the link, and means PostgreSQL will be enabled upon
startup. To control the service before the next restart:

sudo systemctl daemon-reload

…will make systemd aware of the changes.

[Start and Stop at your Command]

[WHO /
WHERE]

Although run
levels are
no longer
particularly
meaningful
under systemd,
you can still
check which run
level you are in
with who -r

ESSENTIALS

[Chapter Eleven]

Linked ln
Systemd makes links between files automatically, but there will be
times you’ll want a file to appear to be in a local directory when it
is elsewhere, with a handy little command we have not so far had a
chance to show you: ln.

ln makes a link which allows a file to effectively exist in two places
at once. In the following example:

sudo ln -s /usr/share/doc/python-numpy/THANKS.txt
numpy-THANKS.txt

…a file will appear in your current working directory. But ls -l and
you’ll see that it’s a special type of file, a link pointing to the actual
file. Edit numpy-THANKS.txt and you’ll find that THANKS.txt in the
linked directory will be edited.

Soft, or ‘symbolic’ links, are created with the -s switch – you don’t
even need the file to which you’re linking to actually exist, which makes
it handy if you’re linking across a network, or to a removable drive.

Backwards
compatibility with
init.d scripts – and

even run levels
– is maintained

by systemd

[SYSTEMD DOT]

Systemd is a
complex system,
with many
elements – from
systemd.unit to
systemd.slice –
but they all have
their own man
pages, and it’s
worth reading
through to help
get the overall
concept.

60

61

It’s called a symbolic link because it works by linking to the name of
the target file, rather than to the file data itself. Create a hard link:

sudo ln /etc/bluetooth/main.conf mybluetooth.conf

…and you have two names (and locations) for the same file – sounds
like the same thing? Not exactly: if you delete the original file in the first
example, you can replace it with a new file of the same name, but different
contents, and the symbolic link will point to the new file. Remove the
original file in the hard link case, and the link still points to the data.

Location, location
The startup scripts – whether init.d or systemd – are generally for
daemons, processes you want running all of the time, like web servers
and databases. There are plenty of programs which do housekeeping
that need to be run periodically – hourly, daily, weekly. For this

purpose, the cron software utility is ideal for scheduling the running of such

programs and tasks. Cron searches its configuration directories and runs
through the scripts it finds there – have a look at the different folders
in /etc with names beginning with ‘cron’.

The easiest way to get to know where things like this are on your
system is to search with locate – which is not installed by default
on Raspbian. Enter sudo apt-get install mlocate, followed by
sudo updatedb, then locate cron – which will find you every file or
directory with cron as its name or as part of its name.

The locate tool maintains a database of every file on the system,
which itself is updated daily by cron. If you’ve made a lot of changes, or
want to find out where some software you’ve just installed has put its
config file, get locate to update its database with sudo updatedb.

The built-in alternative is find, a powerful utility which enables
you to search particular directories – or the whole file system –
by name or name fragment, size of file, how long ago they were
modified, or whether they’re bigger than another file – enough
to deserve a whole chapter of its own. Because it searches the file
system, rather than a cached listing, it takes longer than a locate,
but it is always up to date, and has search options not found in locate
(see the ‘RegExp’ box). To replicate our locate cron command with
the find tool:

[Start and Stop at your Command]

[REGEXP]

The find tool
can search
by regular
expressions, as
well as (part)
name. They’re a
whole book topic
in themselves,
but well worth
investigating
once you’ve got
command-line
basics under your
belt, as regexps
can be used with
many commands.

 [CONQUER THE COMMAND LINE]

62

ESSENTIALS

find / -name '*cron*'

If you were looking for cron or crontab, but not anacron, you could
search for ‘cron*’ instead. There will be more output than you want,
so pipe it through a pager, or perhaps a grep. Back to using cron – the
easiest way is via crontab, which maintains a table where each row
specifies a command, and how often it is to run.

You edit the crontab file not directly, but with crontab -e, which
calls up the default editor to do it. To take an example from Michael
Stutz’s Linux Cookbook (No Starch Press), add an entry in the form:

45 05 * * 1-5 calendar | mail -s 'Your calendar'
me@myemailaddress.com

… which grabs the output from the venerable UNIX calendar
program and emails it to you every morning. The first five crontab
fields cover minute, hour, day of month, month, day of the week, and
can all be replaced with a single special value, like @daily or @hourly.
While man crontab tells you a little about crontab, man 5 crontab
is far more useful as it covers the layout of the file, with examples.
Run man man for more on the numbered sections available with
man commands.

Note that traditional UNIX command-line mail is not installed by
default on the Pi, so if you wanted to follow the example, you would
need to install a simple mailer – we recommend ssmtp, and the
Raspberry Pi forums contain plenty of tips on command-line mail,
as it can be used in all sorts of projects.

A fresh startup
Using the value @reboot, we can easily run our own scripts on
startup, without messing about with system startup scripts. There
are times when a full systemd startup script will be more appropriate,
but for quickly getting something tested, put the script into crontab.

There are two things that may catch you out. Firstly, you might be
running scripts out of a directory that you have in your $PATH, which
defines where Bash looks for commands. As $PATH is only set once you
log in and your personalised .bashrc file is read, scripts running from

[REFUSENIKS]

Not everybody
wanted to move
to Systemd.
Ubuntu tried
an alternative
called Upstart,
before joining
the masses in the
Systemd move.
Raspbian, like
Ubuntu, is based
upon Debian,
whose systemd
adoption
resulted in some
developers
creating a new
distro called
Devuan to carry
on releasing
Debian with a
Sys-V init.

[Chapter Eleven]62

mailto:me@myemailaddress.com

63

 [CONQUER THE COMMAND LINE] [CONQUER THE COMMAND LINE]

crontab which are run immediately upon startup will not be aware of
your $PATH setting. So, you will need to express all commands by their
full paths, such as /home/pi/bin/test.sh – as well as making sure that
the permissions are sufficient.

Secondly, systemd’s parallel service starts also mean that some
services, such as the network, as well as environment variables,
may not be ready when your @reboot commands are called. If you
have problems, try giving a short pause first. It’s ten seconds in this
example crontab entry, but you could use the smallest time that
consistently works on testing:

@reboot sleep 10; /usr/bin/python3 /home/pi/Documents/
Python_Projects/hello_gpio.py

One of the scripts that you’ll see called by cron, is to run anacron,
designed to periodically run tasks on machines that were not always
switched on – so it is very useful on laptops, too – with tasks specified,
in anacrontab, to run after so many days have passed since they last ran.
You can also use the automation of crontab or anacron to run your own
backup scripts, so we’ll discuss backup options in the next chapter.

Installing mlocate
adds a script to
/etc/cron.daily to
update its database
of files and folders
every day

[Start and Stop at your Command]

64

ESSENTIALS

64 [Chapter One]64 [Chapter One]64 [Chapter Twelve]

[CHAPTER TWELVE]

Learn how to protect your data with backups and disk wipes

ESSENTIALS

SAVE IT NOW!

65

 [CONQUER THE COMMAND LINE]

[Save it Now!]

erhaps you’ve got backups running automatically on your main
computer, or perhaps you just back up what’s important now
and then – it’s OK, we’re not here to judge. But we will say

that anything you don’t have backed up, you don’t have. Computers
break. Hard disks and SSDs break. Accidents happen. The unexpected
is somewhat inevitable.

IT professionals prepare as if they could lose everything at any
moment, at least the best do. That might sound a tall order for a small
single-board computer you bought at a disposable price to use in a
hobby project, but your data is the most important thing on it, and
good backups are a useful discipline to take elsewhere. Fortunately, the
command line can actually make this easier; we’ll show you some of
your best options for (relatively) painless backups.

Simplest of all is to copy the data and move it elsewhere. It’s
labour-intensive, compared to automatic solutions, but for only-very-
occasional backups it’s certainly better than nothing, so we will not
ignore this option.

Whether you’re copying to disk, or moving the backup to another
machine, it’s best to make it as small as practically possible. The zip
compression format may not compress as much as some specialist
UNIX choices, but it does mean that other users should be able to open
the file(s) with their standard compression software. You could go with
LZMA or bzip2 compression (from tar, -J or -j, respectively) – both
more widely installed than they used to be – for better compression to

P

Making a
~/bin folder and

adding it to the
PATH directive in
~/.bashrc means

you’ll be able to
run your scripts

by name

By putting
commands in a .sh

file and making
it executable,

you create your
own scripts

66

ESSENTIALS

a smaller file size, but although alternatives to gzip save a little more
space, they can take far longer to perform the compression.

Taking a directory of files that needs collecting together, then
compressing it, can be done with a single tar command:

tar czvf mybackup.tgz myfolder

The c switch tells tar to create the archive, diving into all subfolders
found; f, use the named file (here, mybackup.tgz), is necessary to direct
the output away from the terminal, or – historically – a tape device. Yes,
tape, for tar is short for ‘tape archive’, as telling a sign of its longevity as
its frequent use without a dash in front of the command-line options. v,
as with many commands, asks for more verbose output, so the program
tells you what it is doing and what (if anything) has gone wrong.

Lastly, z invokes gzip compression – saving the extra step of creating
a .tar archive, then running it through gzip. To unpack the archive,
substitute x for extract in place of c – you can omit the z, as tar will
recognise the compression type and automagically deal with it:

tar xvf mybackup.tgz

A single command
wraps up all of

the files and
subfolders, then

compresses
the tar archive

with gzip

66 [Chapter Twelve]

67

 [CONQUER THE COMMAND LINE]

A safe home
Often, using tar to back up /home/pi – with cd /home, then tar on the
pi folder – will be all you need, but if you have data across directories,
from /etc to /var/www, it’s simplest to back up the entire microSD card.
We looked at copying a new Raspbian image onto a card in chapter 10;
backing up your disk is almost a mirror image of that process, which you
can do on the Pi, with a USB card reader – with one important caveat.

You’ll be creating a file as big as the entire SD card – usually 8GB
or more – onto a Pi with a lot less space to spare. The solution is to
compress the image file as it is created, which, for a Pi with a modest
amount of data on it, will result in an image of around 2.5GB. Look back
at chapter 10 for how to be sure which device the USB card reader is –
for a card plugged in as /dev/sdb, and unmounted, do:

dd bs=4M if=/dev/sdb | gzip > back-raspbian.img.gz

Open another Terminal tab and monitor your disappearing disk
space with df – if you don’t think that it will fit, stop the dd operation
with the usual CTRL+C, then rm the image file that you have partially
created, and go and perform the backup on a computer with more disk
space – or with a backup drive mounted, which you copy the archive
to directly. Turning the backup into a usable microSD for the Pi means
piping the other way, from gzip to dd:

gzip -cd back-raspbian.img.gz | dd bs=4M of=/dev/sdb

For disk operations like dd, you’ll need root permissions: you can
prefix dd with sudo, but for saving the file outside of /home/pi you may
also need sudo – which means typing it in front of gzip as well.

This is only mildly inconvenient on the Pi, where sudo does not
demand your password – but on a multi-user computer, or any setup
with greater security, you need a reliable way of becoming the root user
for every operation: running sudo -s will give you a shell with root
permissions, but remember to exit afterwards. Alternatively, a chain
of commands can be run with full admin permissions like so:

sudo bash -c "gzip -cd back-raspbian.img.gz | dd bs=4M
of=/dev/sdb"

 [CONQUER THE COMMAND LINE]

[Save it Now!]

[TAPE
ARCHIVE]

tar dates from
the days when
computers
backed up to
big tape reels,
those essential
props of 1960s
and 1970s sci-fi
films. The lack
of file structure
on tapes means
that tar can save
all of the file
system info such
as ownership
and timestamps.

ESSENTIALS

68

Remote copy
It’s good to be able to make backups as required, using removable
drives, but to move towards systematic backups you will need to
copy across the network. We mentioned SCP in chapter 9. To copy
your backup file to another machine, one that allows SSH login (so is
running a SSH server), pass your login name with the command:

scp -p back-raspbian.img.gz pi@192.168.0.207:/home/pi/bak/

You will then be prompted for the user password. Change the pi@ to
whatever your user name is on the remote machine, not the Pi you’re
copying from. The -p preserves information such as when the files
were last accessed. Note that -P (capital p) can be used to specify a
particular port number.

We showed you how to set up a Pi with a fixed IP address in chapter 7;
that Pi, with a plugged in USB disk drive, could be an inexpensive
backup machine, as well as media server or whatever else your home or
office needs.

Because you’re sending these commands through the Bash shell,
you get all the usual Bash advantages, from tab completion (just
type bac, or however much of the file name is unique in your present
working directory) to wildcards. If you have disparate archives

SCP makes
command-line

copying to remote
machines as easy

as moving files
around on your Pi

[WHICH
FILES?]

Apart from ~,
your project
may have config
files in /etc or
even /opt, and
under /var are
logs, web config
and files – all of
which you may
have modified
for a project.

68 [Chapter Twelve]

69

 [CONQUER THE COMMAND LINE]

in the same directory – such as www-backup-20181225.gz and
data-backup-20181226.gz – then copy them all with:

scp -p ./*backup*gz pi@192.168.0.207:/home/pi/bak/

So far so good, but there are possibilities to automate your backup
process later in the chapter, so the interactive element – having to
give a password – would be better avoided. As long as you can maintain
security in some other way, of course.

Key to logins
Back in chapter 9 when we set up our SSH server, we generated keys
with ssh-keygen – these keys can be used to provide passwordless
login. You can copy them across to other machines manually, as we did
earlier, but a handy shortcut is to use the command ssh-copy-id.

ssh-copy-id pi@192.168.0.207

If you have more than one key pair, use -i to specify which .pub
file you’re copying. -p allows you to specify an alternate port number
– always a good thing in an internet-connected server, but not so
necessary on a local network. Now we’re all set for remote backups –
but if you do them regularly, you’ll waste a lot of disk space duplicating
unchanging data.
rsync lets you copy data in much the same way as scp, but uses a

delta-transfer algorithm, to only transfer the difference between the
copies of the source file on your disk, and the remote, saved version.
This both saves bandwidth used, and avoid cluttering up your backup
disk with multiple near-identical versions of a file. It’s also handy if
you’re paying a cloud provider for storage and data transfer.

If your version of Raspbian doesn’t have rsync, it’s just an apt-get
away. Typically, rsync uses SSH for transport, but you can set up a
server running an rsync daemon, and directly contact the rsync:// URL
over TCP (defaults to port 873). In this case, set an RSYNC_PASSWORD
environment variable or use the --password-file switch.

While rsync is not a built-in Bash command, we are highlighting
it here as part of the array of command-line utility choices that
users face when considering whether or not to simply employ

[Save it Now!]

[WHY
REMOTE?]

As well as
being able
to centralise
backups for
more than one
machine, a
remote backup
protects
you from
unexpected
disasters such
as fire or flood
where the Pi is.
Fairly unlikely?
Yes, but that
doesn’t stop
you insuring
your house.

 [CONQUER THE COMMAND LINE]

70

ESSENTIALS

built-in commands or to try something more complex instead.
In addition, there is the possibility of using version control
systems, such as git, for both backing up, and tracking changes on,
important files.

Script-it-yourself!
But let’s row back to simpler commands. We have seen from early
on how powerful Bash can be by chaining together a few commands;
another way of putting commands together is to bundle them into a
script – a short program simply comprising a small number of Bash
commands, and known as a shell script. Take a look at this code – try
typing it in to your favourite text editor, adjusting it for the IP address
of your networked backup server, and backup folder location (or
change the scp line to a cp to a plugged-in backup drive), and saving it
as test.sh.

#! /bin/sh
cd /home/pi
tar czf mydocsbackup.tgz Documents
scp mydocsbackup.tgz pi@192.168.0.207:/home/pi/bak/

A datestamp in
our script means

that we are not
producing a

backup with the
same name each

day we run it

70 [Chapter Twelve]

71

 [CONQUER THE COMMAND LINE] [CONQUER THE COMMAND LINE]

Then make the script executable with:

chmod u+x test.sh

…and run it with ./test.sh – any problems, then check the names,
network address, and did you perform the ssh-copy-id step?

Now we have a script that saves a folder, and copies it remotely,
do you notice any potential problems? Each time you run it, it will
overwrite the previous mydocsbackup.tgz, both locally and remotely.
We need a way to put a timestamp on the backup name:

#! /bin/sh

TODAY=$(date +"%F")

cd /home/pi
tar czf mydocsbackup-"$TODAY".tgz Documents
scp mydocsbackup-"$TODAY".tgz pi@192.168.0.207:/home/pi/bak/

What we have done is set a variable – TODAY – to the current date,
in YYYY-MM-DD format, which we can now access with $TODAY
(remember, we permanently set variables for the shell named this way,
when changing the prompt in chapter 5). You can run date +%F in the
terminal – date --help will show you the many other format options.
Now you can automate it by putting the script somewhere like /usr/bin
(and with a better name than test.sh), and running it regularly with
cron, as we covered in chapter 11.

Shell scripts tend to grow; there is always room for improvement. Here,
you may want to back up more than one directory, for example, or use
echo to let users know what the script is doing at each stage. You could
even make it interactive, letting users choose which directories to back up.

There are plenty of shell scripting tutorials online, and great books
(see The MagPi book reviews) to take it further, but Raspbian itself
holds many great shell scripts, from which you can learn by example.
To see how a script can be organised to still be maintainable with over a
thousand lines of code, have a look at /usr/bin/raspi-config.

However grand or modest your scripting ambitions, don’t be afraid
to try things out: build up gradually, and test your code each time, so

[Save it Now!]

[HASH BANG]

The shebang,
or hash bang –
#! – at the start
of the script is
an instruction
to the program
loader to run
the program
immediately
afterwards – in
this case an
interpreter
directive to run
/bin/sh – and
pass the script
as an argument
to it.

72

ESSENTIALS

that you know where to look for any errors that you introduce. Help
is at hand from the Raspberry Pi forums, and pasting your code into
shellcheck.net will give you valuable feedback – for example, advising
you the cd line of our backup script should be:

cd /home/pi || exit

…in case the cd step fails – this is generally a good idea, although
not so important in this particular case. Now that we have a choice of
backup options, one task remains: securely getting rid of data from
disks. This is a concern for anyone handling other people’s data, or just
protecting their own privacy and security.

Through the shredder
Back in the 1960s, if you wished to cover your tracks, Mission Impossible
told us it was done by the show opening’s taped mission assignment
finishing, “This message will self destruct in ten seconds…”, and
boom went the tape player.

In these digital days, protecting privacy or security means
understanding how a disk drive actually stores data, so that you
don’t dispose of old disks under the mistaken impression that you’ve
securely erased data, when you haven’t.

Disk space is collected into blocks, sized typically at 4096kB, that
are indexed by the file system with inodes so that the disk controller
knows where to send the read head to retrieve information. SSDs
and flash drives don’t have read heads, but still organise the data in
a similar fashion. Most disk operations occur at the inode level – so
moving a file between directories on the same disk partition is simply
done by relabelling an inode. rm does not delete the data stored, just
the reference to its blocks on the inode.

Plug in a disk drive after someone has done rm -rf on it and it
will look empty, but use a low-level utility and you’ll have access to
all of the jigsaw puzzle pieces needed to put the data back together
again. So far, so NCIS, but can this be significant to the average Pi
user? Given the range of projects out there, and the multifaceted
data that they collect, to stay on the right side of new and future data
protection laws it will be useful to know how to securely remove data
from your disks.

[PASSWORD
FREE]

Using your key
to log in is a
convenience you
quickly get used
to – beyond scp
to your backup
server, try it on
any machine
under your
control that you
have to log in to.

72 [Chapter Twelve]

http://shellcheck.net

73

 [CONQUER THE COMMAND LINE]

Caution
Before we start erasing disks, think of the carpentry maxim, ‘measure
twice, cut once’. It’s easy to mistakenly erase the wrong disk or
partition if you’re not paying attention. Given enough opportunities,
most of us do it, and it’s often the lesson that teaches us to make
proper backups! Running through other operations on the disk (mount,
df, ls, umount), before erasing, works as a sanity check that you’re
addressing the correct partition.

Now to those blocks. You can overwrite every bit of information,
either with all 1 digits, or with totally random data, using dd. Even
then, with magnetic disks, it’s theoretically possible to recover the
data, and multiple overwrites will be necessary – but before you worry
about writing a script to do that, let us introduce shred, a utility that
does just that, overwriting with as many passes as you select as a
command switch (or defaulting to three):

shred -vf -n 5 /dev/sdb

Adding a -z switch will overwrite the random data shred has used
with zeroes, leaving a new-looking disk. -u will delete the file after
the secure overwrite. Shred can also safely overwrite and/or remove
individual files.

Shred will securely
overwrite (then
optionaly erase)
files of sensitive
data – or entire
disk drives

[Save it Now!]

[WHERE AM I?]

If you follow our
tip on SSH keys
everywhere, and
end up hopping
from machine
to machine,
remember to
customise your
Bash prompt
so that you are
always sure on
which machine
you’re about to
erase a file.

 [CONQUER THE COMMAND LINE]

74

ESSENTIALS

7474 [Chapter Thirteen]74

[CHAPTER THIRTEEN]

Here we look at how to install software
and build it from the source code

ESSENTIALS

EASY
COMPILATION

75

 [CONQUER THE COMMAND LINE]

[Easy Compilation]

[CHAPTER THIRTEEN]

t’s so easy to install most software on Raspbian – provided it’s
mature enough to have been packaged as a .deb archive. Often,
however, there’s some great code available you’d love to try, but

it asks you to compile it – sometimes after first cloning it from GitHub.
While not so straightforward as running an apt-get install

command, there’s little to fear in stepping through the decades-old ritual
of compiling software – and when errors do occur, it’s often quite easy to
get back on track. We’ll also look at scripted installs and Python packages,
but first let’s find out what to do if a package is in the wrong format.

Raspbian isn’t the only distribution of GNU/Linux based upon Debian
– distrowatch.com lists more than a hundred – and the ones you’re
most likely to have heard of include Linux Mint and Ubuntu. Ubuntu
– the name derived from an Nguni Bantu term meaning ‘humanity
towards others’ – is so popular that many projects, including ones not
in the Debian and Raspbian repositories, maintain .deb packages for
each version released.

Ubuntu also introduced the idea of Personal Package Archives (PPA)
to the Debian family – special software repositories for uploading
source packages to be built and published as an APT repository by
Ubuntu’s Launchpad software like the official Ubuntu repository, but
for unofficial software from outside. You won’t tend to find these
with Pi software, but if you’ve been inspired to try one of Raspbian’s
relatives on your main PC, you’ll find plenty of instructions on them in
the Ubuntu community documentation.

I

Install alien and
you’ll be able to
swap packages
between Raspbian,
Fedora, and other
systems’ packages

Just paste the URI
ending .git after
git clone at the
Terminal and you’ll
have the very latest
source code

http://distrowatch.com

ESSENTIALS

76 [Chapter Thirteen]

When you run apt-get, or you apt-cache search to look for a
package, APT quizzes its local record of what packages are available to
it. The record of where it gets these packages from – the address of the
repositories – is kept in the file /etc/apt/sources.list and at files in
/etc/apt/sources.list.d/ to which you can also add repositories by hand
should a project you are interested in maintain one.

You can also edit sources.list (not advised) – editing all mentions
of wheezy to jessie was an (unsupported) way of upgrading without
overwriting your SD card when Raspbian updated. Meanwhile, plain old
.deb files can be downloaded, and then installed with the command:

sudo dpkg -i example.deb

And any missing dependencies resolved with an:

apt-get install -f

There is another popular family of GNU/Linux distributions, based
upon Red Hat, and including Fedora and CentOS. Fedora is available as
an alternative to Raspbian (on the Pi 2 or 3), should you wish to try it out.
What we’re concerned with here is situations where you may need to install
packages for one distribution, onto a system of the other type. Your friend

Compilation can
look complicated,
but most projects

provide a well-
crafted make file

for the process
– a custom one
even providing

hints here

76

77

 [CONQUER THE COMMAND LINE]

here is Raspbian’s alien package, which will convert software between
.debs and packages in .rpm (Red Hat Package Management) format.

alien some-package.rpm

…will convert from .rpm to .deb. You’re more likely – on the Pi at least,
where RPM-only packages are rarer – to need to convert the other way:

alien -r mysoftware.deb

Friendly triad
Before package managers, it was normal to compile your own software,
obtaining source code – usually written in the C or C++ languages –
and running it through the GCC compiler, before linking libraries, and
installing to the correct place on your disk drive.

Many of the headaches involved in the process are long gone
as configure and make scripts do all of the hard work, checking
dependencies are installed, then running the correct compiler flags for
the project and the platform, and even installing the man page in the
correct place.

Although most of the software you’ll want to run will be available as a
.deb to install with apt or dpkg, or come with a shell script which deals
with installation (see below), plenty of projects, particularly those you’ll
find on GitHub or FreshCode, need unpacking then compiling.

After unpacking the archive with:

tar xvf latest-software.tgz

…cd into the directory created, and look for a file called README or
README.md, or perhaps one called INSTALL. It will usually tell you to run
a trio of commands that will become familiar – but read the instructions as
there are variations, and some software even bypasses make with its own
local version which you’ll need to run as ./make. The norm is:

./configure
make
sudo make install

[Easy Compilation]

 [CONQUER THE COMMAND LINE]

[TRACK YOUR
INSTALLS]

Installing
software from
outside of
Raspbian’s
repository
means it must
be looked after
separately:
updates, bug-
fixes, security
patches, and
disaster recovery
if something
happens to your
Pi. Keep track of
what you install.

78

ESSENTIALS

[Chapter Thirteen]

However, on the Pi, ./configure on its own may well result in
programs (and particularly libraries) being built so they install in a not-
quite-standard location - /usr/local/lib instead of /usr/lib. This can
cause problems if these directories aren’t on the library search path. In
particular, if building a new version of a library that is already on the
system, you will often end up with two versions of the library on the
system – and the system will continue to use the old one. So, instead of
plain ./configure, we advise using the following to avoid issues:

./configure --prefix=/usr --libdir=/usr/lib/arm-linux-
gnueabihf

Dependencies
Commercial software (open-source or proprietary) often comes as a
large binary file containing all of the dependencies, statically linked
into the application. With most non-commercial software projects,
however, it is more common to just get a list of which version of which
library will be needed to compile and run the software. Luckily, for a
standard Debian package, there’s a simple command that will install
all the dependencies required to build it:

sudo apt-get build-dep <package name>

However, occasionally you’ll need to compile and install something
else first. Often the reason for compiling is to get the very latest

Git was developed
by Linux creator

Linus Torvalds
to handle the

complexities of
multi-million lines

of kernel code
– yet makes it

simple to maintain
version control on

the simplest of
software.

[GIT BOOK
REVIEWS]

We’ve reviewed
a couple of
useful books on
Git in The MagPi
– have a look at
the reviews in
issues 41 and 58.

7878

79

version of the software from the developers, for new features,
compatibility, or bug fixes. In the last few years, GitHub has become
the default place to host free software projects; other repositories
are available, but we’ll just look at fetching software from GitHub, to
quickly show you what you need to know.

Your first encounter with GitHub’s existence may be seeing a banner
on a project page inviting you to ‘fork me on GitHub’, or an invitation
to ‘clone’ the software. Yes, we’re in the world of a project big enough
to sustain its own jargon. A fork is simply your own development
copy to work on, after which you can offer the changes back to the
project, or publish them (on GitHub or elsewhere) for others to try
or build upon.

You don’t even need to be able to code – many people are now
using GitHub for collaborative development of documentation,
including scientific research, and even fiction. But to simply download
something, we don’t need to worry about other Git methods – just
‘clone’ the application’s source to your Pi with the following command:

git clone https://github.com/veltman/clmystery.git

…which will make a local directory containing all of the source files.
cd into the subdirectory just created. Then follow the configure/make
instructions as above.

Nil desperandum
Sometimes, somewhere along the compilation, something goes wrong,
and the script terminates with a complaint of some missing package.
On a good day, you’ll apt-cache search for the name of the missing
dependency and there it will be, easy to install on Raspbian.

On a slightly-less-good day, you’re going to have to dig around a bit
to find the software, or the latest version that’s being called for. Maybe
having to go to GitHub or SourceForge.net. This is OK if the developer
has a setup not too far removed from your own; the extra install steps
may go smoothly. Otherwise, don’t despair: help is available.

Most projects have one or more ways of reporting a problem and
seeking help: a mailing list or Google Group; a wiki on the project
SourceForge page; an email address for the lead developer; or even a
Twitter account. Try to state your problem with plenty of detail, and

[Easy Compilation]

 [CONQUER THE COMMAND LINE]

[IT’S A
MYSTERY]

The clmystery
in the GitHub
example is The
Command Line
Mystery – a text
game which
teaches you
command line
use. Entertaining
and very useful.

http://SourceForge.net

80

ESSENTIALS

8080 [Chapter Thirteen]

remain polite and patient, and usually you’ll find helpful people.
Remember, although people want to be helpful, you are asking them to
give up time to answer you – if you’re frustrated with the installation
process, and we’ve all been there, don’t let that stop you being
respectful of anyone going out of their way to help you.

If you don’t have time for chasing up answers, but remain interested
in a project, another option is to wait for the project’s next release. By
this time the dependencies may have become more widely available,
even making their way into the Raspbian repositories, or the problem
may simply no longer arise.

A scripted install
You’ll sometimes be asked to grab an installation script and run it
directly – as is the case with the excellent EduBlocks, a half-way house
between Scratch and Python which is helping young coders get over the
large step between the two languages. The EduBlocks install wants you
to run:

curl -sSL get.edublocks.org | bash

…which takes the shell script at get.edublocks.org (you can look
at it there in your browser) and pipes it through to a Bash process to
run. The -s switch tells curl not to show a progress meter or error
messages; -S overrides this to show an error message if it fails; while
-L tells it to follow to wherever the site redirects to for the script.

If you don’t like running software without knowing what it is doing
to your Pi, or simply wish to take a look inside the script and see what
the installation does, instead, download and save as edu-install.sh or
just install.sh if that won’t overwrite anything of the same name in
your current working directory:

curl -o install.sh -L get.edublocks.org

…and you’ll see the script downloads and unpacks a tarball
with more than one script inside, first running the one that
installs dependencies.

You can run the downloaded script – which you can do with sh
edu-install.sh. If you don’t read the script before running it, you’re

[GOING FOR
UBUNTU]

Ubuntu, can be
installed on the
Pi (2 or 3), as well
as your PC, Mac
or laptop,

http://get.edublocks.org
http://get.edublocks.org
http://get.edublocks.org

81

 [CONQUER THE COMMAND LINE]

placing a lot of trust not just in the developer(s) who wrote it, but every
step of its journey before it reached your machine.

Python, please
Over the years of installing software from various sources, you
learn to recognise signs of whether or not it’s likely to be a painless
installation – and one cause for hope is something written in Python.
Although both good and bad software can be written in any language,
Python software and Python libraries just seem to be well-packaged
and reliable.

Although Debian-based GNU/Linux distributions like Raspbian come
with the excellent APT and dpkg (Debian Package Manager), many
popular programming languages have evolved their own ecosystems
of packing tools and repositories – there are several for the Emacs
text editor alone! Two that you are most likely to come across are
JavaScript’s npm and Python’s pip. After using apt, the command
format will be familiar, and:

sudo pip3 install numpy

…won’t be a stretch to remember if the installation instructions
tell you to install Python libraries such as NumPy. Happy installing,
and above all, don’t worry – it’s quite hard to mess up the Raspbian
installation, but if you do, at least those backups you made earlier will
get tested out.

EduBlocks is a
good example
of a project that
makes your life
easy by putting
every stage of the
installation into a
shell script, and
giving you just one
command to run
the installation

[Easy Compilation]

82

ESSENTIALS

82 [Chapter One]82 [Chapter One]82 [Chapter Fourteen]

[CHAPTER FOURTEEN]

Yes, it is possible to get online from the command line. Here’s how…

ESSENTIALS

COMMANDING
THE INTERNET

83

 [CONQUER THE COMMAND LINE]

[Commanding the Internet]

ow that you’re getting comfortable at the command line, and
perhaps finding it faster for some tasks, you may want to increase
the amount of time you spend there, trying to improve your

productivity on everyday tasks. Here we survey internet software – a
diverse field, covering clients for protocols (IRC, Jabber), specific services
(Twitter, BBC iPlayer), and tasks (search), as well as general web browsers,
mail clients, and even surprising uses of the venerable Telnet client.

Don’t get carried away: command-line alternatives vary from
essentials you’ll see often used in scripts and Pi projects, to less
satisfactory alternatives you’d only use when there is no GUI available
– so don’t plan to switch all of your Facebook and Instagram use to
the terminal. We concentrate here on internet interactions which
will be useful for your Pi project, but sometimes you may be using the
command line on the Pi and just need to look something up on the web,
so welcome back to the Internet of Text.

N

Text-mode browsing keeps the
pics (but not the animated ads),

thanks to w3m-img

Keep up with Twitter in the
terminal, or send tweets from

shell scripts

84

ESSENTIALS

84 [Chapter Fourteen]

If you’ve ever had to fall back on the Pi as a desktop machine, you’ll
know that capable as it is – particularly the four-core Pi 3 – you don’t
want to have too many browser tabs open at once. Some websites are
so dependent upon JavaScript, though, that for all the memory that
they hog on the Pi, you can only access them via Chrome (or Firefox).
For others, try the retro world of the command-line web browser.

In the early 1990s, most people who had internet access browsed
with a command-line browser called Lynx. After a quarter of a
century, it’s still in use! If not being able to see any pics makes the web
pointless for you, consider the advantages. No tracking, no distractions
from reading the text, and quicker page loads. Screen reader users
and the mobility impaired can benefit from the simpler keyboard
navigation, and as pages can be dumped to stdout, you can pipe it
through other command-line applications:

lynx -dump https://duckduckgo.com/?q=gpio+bash | tail -n 30

Lynx isn’t the only choice in command-line browsing – Raspbian
also offers links2 and w3m; the latter is even usable from within the
Emacs text editor. Install xterm (an alternative to Raspbian’s default
Terminal application) and w3m-img, and you can even view images
when browsing from the terminal.

Commanding the web
Telnet – short for teletype network – is the protocol developed at the
end of the 1960s to provide two-way text communication between
computers. It dates from an era without security concerns, and was
long ago replaced by SSH as a means of connecting directly to other
machines over open networks, but the Telnet client remains useful
for interactively querying services such as mail or web for testing,
by connecting to the appropriate port on the server, then issuing
commands in the service’s protocol:

telnet example.com 80
GET / HTTP/1.1
HOST: example.com

…which (after pressing ENTER again) should dump a webpage onto

[MOBILE]

Responsive web
design should
mean that w3m
works with more
modern sites.
While we wait
for reality to
catch up with
the ideal, use
mobile websites:
w3m https://m.
facebook.com

https://duckduckgo.com/?q=gpio+bash
https://m.facebook.com
https://m.facebook.com

85

 [CONQUER THE COMMAND LINE]

the terminal. It’s a basic but useful diagnostic tool, but also gets used
in some fun applications that we’ll take a look at later in this chapter.

Surfraw
As we have seen earlier, with wget and curl, functions such as
downloading can be removed from the web browser. Another case
where specialist commands seem most appropriate is searching.
Looking things up from the command line can be done directly with
a nifty little program called surfraw, which uses helpers called elvi to
tackle different search tasks – see them all with:

surfraw -elvi

As a good citizen of the command-line world, surfraw pays due
regard to your time and your tendons, and can be called simply with sr.

sr google -results=2 raspberry pi clojure gpio
sr translate peloton
sr gutenberg dickens
sr wikipedia permaculture
sr bbcnews tim peake
sr rhyme orange

[Commanding the Internet]

Command-line
browsing is
all about the
information –
mostly text, but
not entirely

86

ESSENTIALS

The results are displayed in your browser, which you can set in
/etc/xdg/surfraw/conf:

def SURFRAW_text_browser /usr/bin/lynx
defyn SURFRAW_graphical no

The Beeb
YouTube videos also won’t work from a text mode browser, but it’s
easy enough to grab them with youtube-dl.

sudo apt-get install youtube-dl
youtube-dl https://www.youtube.com/watch?v=Elb09DWxA6Q

Each downloaded video is saved as an MP4 file which, thanks to
MPlayer’s ability to output video through a choice of libraries, can
even be rendered in ASCII through the terminal, using the -vo caca
option. It can also be output via an SSH session, although forwarding
the sound is an exercise we leave the reader to research. ASCII
rendering is far from high-resolution, but if you run mplayer from
one of the virtual consoles (which we visited back in chapter 1), it will
default to a framebuffer output, for regular-quality video overlaying
the command line.

You can also access BBC content from the command line. Although
television programmes are only available from IP addresses located
in the UK, radio shows – from Radio 3 concerts to classic comedy

No spare memory
to open a YouTube

link? Download
the video to
watch later

86 [Chapter Fourteen]

https://www.youtube.com/watch?v=Elb09DWxA6Q

 [CONQUER THE COMMAND LINE]

87

 [CONQUER THE COMMAND LINE] [CONQUER THE COMMAND LINE]

and drama on Radio 4 Extra – can be downloaded for a few days
after they have been broadcast, by the get-iplayer script; this
saves them in the AAC format for listening to later. To keep within
reasonable fair use terms – or at least be equivalent to the BBC’s own
iPlayer service – the programmes should be deleted after 30 days.

At the time of writing, the programme search function no longer
seems to work properly. So instead, you’ll need to use the iPlayer
website to find the PID (Programme Identifier) of the desired show
and then use it to ‘record’ (i.e. download) it. For example:

get_iplayer --pid=b0b95311

You can also use a comma-separated list of PIDs to download more
than one show at a time.

get_iplayer --pid=b0b95311,b0b94zn8,b0b950c9

Calling with --stream sends the output to stdout, for redirecting
via a pipe to an audio player (for radio shows). The --stdout switch
does this in addition to recording.

Communication
We mentioned command-line mail – scripted directly – in the
calendar example in chapter 11. ssmtp makes a fine choice for the
mail command, to use in scripts that email you when your Pi does
something. Nowadays, getting the Pi to post to a microblog is a far
more popular choice – at least if the microblog is Twitter, although
other choices are available.

There are instructions all over the web for using Python modules to
tweet when your Pi detects various events on the GPIO pins. If Python
suits your project, then go ahead, but for the simplest setups all
that’s needed is the easily scriptable twidge:

sudo apt-get install twidge
twidge setup

Setup is easy: twidge will give you a URL to visit, where you can
authorise twidge to access your Twitter account; it passes you an

[Commanding the Internet]

88

ESSENTIALS

88 [Chapter Fourteen]

authorisation code to use, after which twidge is ready to go. twidge
lscommands will list the available commands. To post from the
command line (or a script), try something like:

twidge update "Testing twidge - tweeting from the
#RaspberryPi #commandline."

The update command will also read from stdin. The helpful manual
on the project’s GitHub page will get you started. For an interactive
(and very colourful) Twitter client on the command line, install
Rainbowstream, which you can do with pip:

sudo pip3 install rainbowstream

More than just gimmicks
Command-line apps are also available for older means of internet
communication, from IRC to Jabber, and Mutt is a powerful enough
email client to keep people (who otherwise don’t spend much time in
the terminal) using it. Serious work gets done in a shell, but coders
keep churning out command-line apps that are just for fun, too.

MapSCII is a Braille and ASCII map renderer for your console,
using OpenStreetMap data, written by Michael Straßburger
(magpi.cc/znMzWa). To connect from a remote computer:

telnet mapscii.me

ASCII Star Wars appeared at the end of the last century, and is
still available at asciimation.co.nz. Ironically, you’ll need a modern
graphical browser to view it.

Some sites are designed to look good in text-mode browsers.
A favourite is wttr.in, the weather website. Enter your
location, and open in any of the text-mode browsers that
we’ve mentioned; for example:

w3m wttr.in/Liverpool

[Chapter Fourteen]

[EMAIL]

If you struggle
to keep up with
email using
a webmail
interface,
challenge
yourself to use
Mutt for two
weeks: the
command line
may let you finally
tame your inbox.

http://magpi.cc/znMzWa
http://mapscii.me
http://asciimation.co.nz
http://wttr.in
http://wttr.in/Liverpool

RASPBERRY PI

Amazing hacking and making projects
from the makers of magazine

Available
now magpi.cc/store

plus all good newsagents and:

Inside:
 How to get involved with the Pi community

 The most inspirational community projects

 Essential tutorials, guides, and ideas

 Expert reviews and buying advice

THE Official

RASPBERRY PI
PROJECTS BOOK

200 pages of
Raspberry Pi

£12.99

https://itunes.apple.com/gb/app/the-magpi-the-official-raspberry-pi-magazine/id972033560?mt=8
https://play.google.com/store/apps/details?id=com.raspberry.magpi&hl=en_GB
http://www.magpi.cc/store

Inside:
• Learn how to set up the Raspberry Pi,

install an operating system, and start using it

 • Follow step-by-step guides to code your
own animations and games, using both the

Scratch and Python languages

• Create amazing projects by connecting
electronic components to the Pi’s GPIO pins

Plus much, much more!

The only guide you
need to get started
with Raspberry Pi

£10 with FREE
worldwide delivery

THE OFFICIAL

Beginner’s Guide
Raspberry Pi

Buy online: magpi.cc/BGbook

http://www.magpi.cc/BGbook

• Learn to code
using Scratch, the
block-based language

• Follow step-by-step
guides to create games
and animations

• Includes 24 exclusive
Code Club stickers!

• Use the magic
glasses to reveal
secret hints

• The special spiral
binding allows
the book to lay flat

Available at: magpi.cc/CCbook1

£9.99
Free w

orldw
ide shipping!

Book of
Scratch

Volume 1 Simple coding for total beginners

The first
Code Club book

has arrived!

http://magpi.cc/CCbook1

SUBSCRIBE TODAY
FROM ONLY £5

Subscribe online: magpi.cc/subscribe

Low Monthly Cost (from £5)
Cancel at any time
Free delivery to your door
Available worldwide

Rolling Monthly Subscription

£55 (UK) £90 (USA)

£80 (EU) £95 (Rest of World)

Free Pi Zero W Kit with 12 Month upfront subscription only
(no Pi Zero Kit with Rolling Monthly Subscription)

Subscribe for 12 Months

Subscriber Benefits

FREE Delivery
Get it fast and for FREE

Exclusive Offers
Great gifts, offers, and discounts

Great Savings
Save up to 35% compared to stores

98

http://www.magpi.cc/subscribe

Pi Zero W

Pi Zero W case
with three covers

USB and HDMI
converter cables

Camera Module
connector
Offer subject to change or
withdrawal at any time

JOIN FOR 12 MONTHS AND GET A

FREE Pi Zero W
Starter Kit
WITH YOUR SUBSCRIPTION

Subscribe in print
for 12 months today
and you’ll receive:

SUBSCRIBE
on app stores

Buy now: magpi.cc/subscribe

99

https://itunes.apple.com/gb/app/the-magpi-the-official-raspberry-pi-magazine/id972033560?mt=8
https://play.google.com/store/apps/details?id=com.raspberry.magpi&hl=en_GB
http://www.magpi.cc/subscribe

ESSENTIALS

raspberrypi.org/magpi

http://raspberrypi.org/magpi

